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PROMISING SYSTEMS 
FOR CONTROLLING PROSTHETICS: 
A REVIEW
People with disabilities in the enormous scientific-technological revolution hope that 
it will overshadow the provision of assistance and find suitable solutions for them 
to lead their normal lives. The intersection of sciences among themselves took into 
account the problem of physical disabilities and, in particular, the loss of both upper 
and lower limbs. Modern prostheses are the product of the intersection of science 
and the technological revolution, which are still in the ladders of modernity and 
development due to they contain operators that can be controlled by brain signals 
according to the principle of neurainterfaces. Neuroimaging techniques such as 
electromyography, functional infrared spectroscopy and electroencephalography 
are the superior methods of controlling these modern prostheses can be modelled 
on two functions, namely independent work and hybrid work. In light of these 
data the article takes upon itself these systems in their individual and hybrid states. 
In addition, this article indicates which of these techniques is the most worthy in 
creating the preferred system. The scope of the research methodology limited 
to neuroimaging techniques towards scenarios of neurological rehabilitation and 
restoration of lost functions. The review has three axes. The first axis collects, 
summarizes and evaluates information from relevant studies published over the last 
decade. The second axis presents important results from previous experimental 
results in this field in relation to current research. This study was systematically 
conducted to provide a rich image and evidence-based evidence of prosthetic 
control techniques to all experts and scientists. The third axis is to identify a wide 
area of knowledge that requires further investigation, and follow-up the succession 
of scientific events of these systems towards the possibility of integration among 
themselves to create the most promising system for controlling prostheses.

Keywords: disability, electroencephalography, electromyography, functional near 
infrared spectroscopy, hybrid brain-computer interface, control system, operators, 
prostheses.

Introduction
Our concrete world, which has become inflamed 

by wars with modern and deadly lethal weapons, 
indicates that disabilities are constantly increasing 
and significantly. In order to diagnose the focus of 
the research we take in consideration the disabilities 
that can be seen in the upper limbs are present in five 
essential regions [1]:

1. Wrist amputation. 
2. Forearm amputation.
3. Shoulder amputation. 
4. Shoulder joint amputation. 
5. Forequarter amputation.
Disability or loss of a body part is a difficult 

psychological blow to a person, which causes anxiety, 
stress and depression, has a strong impact on a person's 
personality and may even lead to suicidal thoughts.  
In order to put the disability of the limbs, in particular, 
the upper limbs, as a research problem, it is necessary 
to work on finding alternatives using concerted 
efforts and cooperation and taking advantage of the 
accelerated technological progress to improve the lives 
of the missing limbs.

Previously, the prosthesis served only a cosmetic 
purpose, and after technological progress entered, the 

prosthesis was blended to be a hybrid between aesthetic 
and functional performance. To control the functional 
performance, it is necessary to control the triggers of 
the prosthesis. Modern neural interfaces play the role of 
controlling these operators that — neural interfaces —  
based on the real-time detection of patterns of motor 
activity of the brain using neuroimaging techniques  
on the one hand and the transformation of the 
information obtained into commands for controlling 
the example of a prosthesis on the other [2, 3].

Brain — computer interfaces (BCIs) can be 
defined as neural interfaces that keep pace with 
modern technical development, which are innovative  
in measuring brain activity and transferring commands 
to a computer or an external device, and they are based 
on controlling machines and other devices using only 
what the operators think (using only their thoughts). 
BCIs in terms of operation, there are two different 
systems, namely

—  unidirectional its action is limited to either 
receiving signals from the brain or sending signals  
to the brain; 

—  bidirectional allowing the exchange of 
information in both directions, thereby controlling 
external devices [4]. 
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It should also be noted that neural interfaces can 
be classified depending on the nature of the work, 
whereas recent studies have proven the possibility 
of forming another system of neural interfaces called 
hybrid brain-computer interface systems, which 
abbreviated as hybrid brain–computer interfaces 
(HBCIs). In terms of data processing the work of 
HBCIs is extends to hybrid double and triple data 
processing and is not limited to single data processing 
[5], [6–8]. Neuroimaging methods can be based  
on BCIs or HBCIs. Currently, the most prominent 
and popular methods for controlling neuroprostheses 
neurorehabilitation are electroencephalography (EEG) 
[9, 10], functional near infrared spectroscopy (fNIRS) 
[11, 12], and electromyography (EMG) [13, 14].

As documented by recent experimental studies, the 
most common methods are (EEG, fNIRS and EMG), 
which are of great interest in the fields of prosthetics. 
It should be noted that these methods (when used 
independently) cannot form an integrated system  
and this is due to several inherent disadvantages. 
However, what distinguishes these methods is that they 
can be one that can fill the shortcomings of the other 
with which they share in the composition of the hybrid 
system. On the related hand, the fNIRS technique is 
one of the most important ways to form a hybrid system,  
as it does not depend on muscle activity. The absence 
of muscle activity or muscle lethargy, or their inability 
to cause a deficiency in EEG and EMG techniques.

Similar, the article sheds light on adored 
technologies in the control framework on external 
devices and diagnoses their superiority and non-
superiority towards HBCs based on the most important 
studies that have dealt with these technologies whether 
used in the individual state or in their hybrid state. 
In addition, this article encourages those interested 
in scientific research related to prosthetic control 
systems, exoskeletons and in general devices that 
can be controlled through the biological imagination. 
The product of scientific progress of medical devices 
overshadowed the improvement and management of 
prostheses in terms of aesthetics and functionality [15]. 
Thus, the classification of human-machine interaction 
strategies is influenced by recorded brain signals that 
are well-known tools for studying brain functions and 
which are in the depth of the growing scientific research 
axes. In turn, neuroimaging techniques that come into 
significant contact with prosthetics have emerged.

EEG is one of the first neuroimaging techniques 
proposed and mastered. It is used to record 
physiological signals during brain activation to 
represent hand movements as a procedure for 
controlling prostheses particularly, the upper limbs 
[16]. Electromyography (EMG) is another pioneering 
technique using electromyography for controlling 
external devices [17] and neurorehabilitation [18]. 
fNIRS is a powerful tool for studying brain activity, 
more widely used in current research and in various 
fields [3]. Despite the relative successes achieved by 
the above techniques, they cannot be considered as 
promising and ideal ways to control prosthetic limbs 
due to the drawbacks associated with them. Similarly,  
this review deals with future perspectives that strengthen 
the concepts of finding a promising prosthetic control 
system.

Scope of research methodology strategy
The ultimate goal of this review is to analyze and 

compare the systems and research studies in the 
field of prosthetics in order to consolidate the idea of 
finding an integrated and promising control system 

for the prosthesis. The methods varied from databases 
such as Google Scholar, eLIBRARY, Scopus and 
various websites such as  https://www.refseek.com, 
https://www.base-search.net and others. The scope 
of the research strategy and methodology involved 
hundreds of up-to-date sources for 95 % (2020–2024)  
and was reduced to 67 sources. 

The sequence of searching for technical systems, 
both individual and combined, up to the control system 
of the prosthesis can be indicated in Fig. 1.

Conclusion the research methodology focused 
on the topics of the article and its keywords, the 
recommendations of experienced researchers and the 
usefulness of their observations, and then added or 
deleted them to reach the target purpose.

Hybrid brain–computer interface (HBCI)
The concept of BCI is related to the fact of 

recognization of data in real time and this is considered an 
essential requirement for controlling the prosthesis. BCI  
is located at an interdisciplinary concept as it includes 
engineering, computer science, biology and physics 
but its development is closely and really related  
to physics. Spontaneous physiological processes or 
processes resulting from external stimulation lead to the 
classification of brain states according to its recorded 
activity in real time using an intelligent BCI system. 
The reception of signals from the brain, sending them 
to it, or allowing the exchange of information carried by 
these signals in both directions depends on the work of 
HBCI [19], and can be classified as the following [3, 4]:

BCI based on the control command. The neural 
interfaces are classified based on the active-reactive 
and passive mode or they may be dual-mode and this 
depends on the control commands provided by BCI 
operator.

BCI based on the way the input data are processed. 
Synchronous and asynchronous this depends on the 
input processing method.

BCI based on invasive and non-invasive BCI 
and brain–machine interfaces. Electrophysiological 
recordings may be classified as non-invasive or invasive, 
but it is the most promising system for controlling 
prostheses based on non-invasive (the purpose of the 
current article).

HBCI includes single data processing, or extends 
to double and triple data processing and this is what 
makes it a hybrid system [20, 21–23]. According to 
the principles of operations that may be related to 
electrical activity, chemical processes of the brain or 
others, one of the highest goals of  HBCI is to control 
prostheses or external devices in general using brain 
electrical activity in the form of EEG [24] or chemical 
activity in the form of fNIRS [25, 26], when used 
alone or in combination [27]. A large percentage of 
PSI systems use only one type of physiological signal, 
whereas fNIRS method is able to take advantage of 
different methods and thus can combine active and 
passive neural interfaces.

Active and passive HBCI systems are more efficient, 
allow assessing the mental state of the human or 

Fig. 1. Research methodology for the most common systems 
for prosthetic scenarios
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animal and take benefit of various systems such as 
fNIRS and EEG [24, 28, 29] as well as EEG-EMG hybrid 
technologies [30, 31]. In the context of hybridisation 
systems HBCI can be of three types according to 
different brain activity signals:

I. HBCI when using various signals of reflex brain 
activity.

II. HBCI when using signals of brain activity mixed 
with external signals of a different nature. 

III. HBCI when using various physiological brain 
activities simultaneously is synchronized with the 
recording technology.

The performance of hybrid BCI provides a higher 
rating accuracy than individual BCI. Therefore, one of 
the fundamental reasons for not adopting HBCI on a 
large scale in the bulky and complex equipment. To 
decipher this complexity, lightweight and compact 
HBCI needs to be implemented with caution to reduce 
performance degradation. In this line of research 
studies have shown that the use of HBCI with only 
two EEG channels and two pairs of fNIRS (detectors 
sources) can achieve high accuracy while the system is 
easy to use [32].
The most common systems in prosthetics scenarios

In its independent state
EEG

EEG is a non-invasive  method that depends on the 
nervous system by stimulating its electrical activity, and 
the information recorded by EEG and obtained between 
the brain and the device as a result of electrical activity 
is still low. EEG has proven  itself in several areas, 
particularly in clinical applications [9, 10, 33], but due 
to highly sensitive to artifacts and noise, which makes 
it unsuitable as a control system for prostheses when it 
is in its independent state [16]. However, experimental 
studies have recently been conducted to design and 
implement a prototype artificial lower limb controlled 
by brain signals recorded by EEG [34].

Advantages:
a.  Low cost. 
b.  Portable, non-invasive and easy to use.  
c.  Can provide high temporal resolution of brain 

activity. 
Disadvantages:
a.  Low spatial resolution due to wide distribution of 

electrodes on the scalp. 
b.  Susceptible to artefacts associated with eye 

movements, muscle contractions, etc.
EMG

EMG is a diagnostic method that works according 
to the principle of skeletal muscle activity to record 
vital signals resulting from muscle activity. When its 
work is limited to measuring the electromyography 
of the surface muscles resulting from the muscular 
structure, it is called surface electromyography and 
is denoted by the symbol (sEMG). The measurement 
can be achieved either invasively or superficially (non-
invasively), at the level of a single muscle fiber, a single 
motor unit or the entire muscle. EMG information 
processing permits diagnosing musculoskeletal and 
neuromuscular disorders and analyzing or using simg 
for rehabilitation or robot control [14, 35].

Advantages:
a.  Extremely high temporal resolution.
b.  Excellent source localization capabilities. 
Disadvantages:
a.  Requires expensive equipment to be set up and 

operate.  
b.  Requires highly trained personnel for proper 

calibration and signal processing. 

c.  Susceptible to environmental interference, such as 
electromagnetic fields generated by nearby electronics, 
which can distort readings if not properly shielded 
from these sources before taking measurements. 

fNIRS
fNIRS is a non-invasive (neuroimaging methods for 

BCIs) optical imaging technique that typically uses 
two or more different wavelengths to measure changes  
in the concentration of oxygenated hemoglobin 
(oxyHb) and deoxygenated hamoglobin (deoxyHb) 
(650–1000 nm). However, several aspects that probably 
make fNIRS more useful for evaluation in conjunction 
with EEG, sEMG, functional magnetic resonance and 
positron emission tomography include its usefulness 
depended on usability as well as indicators that oxygen 
saturation of brain capillaries observed with fNIRS 
mostly reflects neuron activity [36, 37]. fNIRS can only 
be measured in areas close to the surface of the cortex 
and can also be referred to as optical topography (OT) 
and sometimes simply as NIRS (Fig. 2).

In addition, several experiments utilizing fNIRS 
for prosthesis control have been relatively successful  
[1, 12].

Advantages: 
a.  Portable and low cost compared with other BCI 

technologies. 
b.  Highly sensitive and capable of detecting 

changes in oxygenated blood levels at different depths 
of brain tissue with good accuracy when properly 
calibrated. 

Disadvantages: 
a.  Lower temporal resolution than EEG or MEG 

systems due to their reliance on haemodynamic 
responses rather than electrical signals directly from 
neurons.  

b.  Not suitable for measuring deep brain structures 
because it depends on the transmission of light through 
the skull, which is known for the hardness of its bones, 
which leads to obstruction of light in thick skulls or 
dense skeletons, as in the elderly or under 5 years of 
age in children.

Results of previous studies of the system in its 
individual state that used the most common classifiers, 
such as, Support Vector Machine (SVM), K Nearest 
Neighbor (KNN), linear discriminant analysis (LDA) 
and others are shown in Table 1. 

Hybrid state of fNIRS + EEG 
The basic idea of creating any hybrid system, be it 

technical or software , is that one of the two systems 
should be complementary to the shortcomings of the 
other, so that the output of the hybrid system should 
provide results that are superior to those of the stand-

Fig. 2. Simplicity of the work, showing a subject performing 
experimental tasks in a laboratory at Belgorod State 
University in Russia in pursuit of finding a control system  

for prostheses
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alone system. On the other hand, it should be that two 
candidate systems for the formation of the hybrid state 
are similar in some characteristics with the possibility of 
compensating for their shortcomings with each other.

As mentioned above, fNIRS technology is the 
technology that conforms to this vision, it can be 
considered as a complementary tool to fill the 
shortcomings of the common technology. Thus, the 
possibility of creating a hybrid system of fNIRS+EEG 
is possible to obtain, since the results obtained with 
these systems are better than those obtained when 
used independently (Table 1, 2). 

In EEG, sensor-electrodes are located on the skin of 
the upper part of the skull (according to international 
«10–20» system) and pick up electrical signals from 
neurons in the brain. This leads to the fact that the 
electroencephalography of the brain can be measured 
and at once allows monitoring complex nervous 
activity as well as tracking its continuous changes [3]. 
EEG is also positive in some characteristics as well as 
it is negative in some characteristics, for example, it 
is non-invasive, provide high temporal resolution and 
allowing real-time measurement of motor imagery 
in its positive sense [42], while it is very sensitive to 
noise in its negative sense, and this is what makes it 
under study and to say a complementary tool, and 
fNIRS may be an alternative to it for some functions or 
these two technologies may have a unified system that 
complements each other.

In contrast to fNIRS, which suffers from a time delay 
of 3–5 seconds in detecting regions of brain activity. 
It has also been extensively reported that better BCI 
performance can be performed by using multimodal 
analyses instead of offline EEG signals. For this, 

numerous studies evaluating both the electrical activity 
of the brain and the activity of the circulatory system 
attracted considerable attention [43, 44]. Furthermore, 
recent scientific studies based on the analysis of 
activated brain regions using fNIRS proved that the 
accessory motor cortex was obviously activated during 
motor imagery, which leads that hybrid signals with 
hybridisation strategy can improve stability and error 
neglect in BCI systems, this makes it a valuable way for 
practical applications [45].

The accuracy of classification and the rate of 
information transfer by the method of the combination of 
EEG-fNIRS due to their complementary characteristics 
are from the widespread indicators in our current time 
[22]. The combination of these technologies has certain 
unique characteristics because the basis of merge them 
is their dependence on a physiological phenomenon 
called neurovascular coupling in the brain, which makes 
them more useful in certain applications. The system 
of the two technologies is promising for prosthetic 
control [46]. Therefore, in the foreseeable near future, 
a possible alternative to EEG for recording brain 
activity in a mobile handheld BCI can be considered 
as fNIRS technology or a form of hybrid EEG-fNIRS  
method. 

Hybrid state of fNIRS + EMG
EMG information processing enables the diagnosis 

of muscle and neuromuscular disorders, as well as 
analyze or use sEMG in various fields for example 
robot control, rehabilitation and others [47, 48]. Their 
frequency ranges vary from 0,01 Hz to 10 kHz and 
this certainly depends on the type of study carried 
out by EMG. According to recent studies, frequencies 
between 50–15 Hz are the most useful [49]. Whereas 

Table 1 

Classification accuracy results for systems (independent usage)

Reference and 
publication year

Independent 
system

Method Accuracy

[38], 2021 EEG End-to-end shallow architecture 83,20 %

[39], 2022 EEG Multiple built-in transfer training 83,14 %

[2], 2021 fNIRS NN_LSTM, NN_ConvLST, NN_ResNet 91 %

[40], 2020 fNIRS
Linear discriminant analysis, support 

vector machine and k nearest neighbor
90,54 %

[41], 2017 EMG SVM, LDA 72,2 %

[35], 2023 sEMG CNN-LSTM 70 % : 30 %

Table 2

Classification accuracy results for systems (hybrid usage)

Reference and 
publication year

Hybrid state of  
system

Method
Accuracy 
or average

value of accuracy

[56], 2022 EEG+fNIRS Vector-phase analysis 82, 89, 87, 86 %

[57], 2022 EEG+fNIRS
fNIRS-driven attention network 

(FGANet)
78,59 % ± 8,86

[45], 2023 EEG+fNIRS
FBCSP+PCA+SVM,

GLM+MBLL
92,25 % ± 4,99

[41], 2017 sEMG+fNIRS SVM, LDA 86,4 %

[58], 2021 sEMG+fNIRS LDA 96,4 % and 94,1 %

[59], 2020 sEMG+fNIRS LDA 78–81 %
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with fNIRS, the frequency is approximately 1 Hz at 
optimal wavelength 830 nm [3, 50]. At the same 
study, sEMG and fNIRS can be used together or used 
independently, but when they are used together the 
dual system excels.

In the field of motor activity, several studies carried 
out through the techniques of fNIRS and EMG have 
shown that there is no relationship to the signals 
obtained during dynamic movements when performing 
sports exercises, in addition, even the methods of 
signal analysis cannot be described. In [51], found that 
it is possible to perform simultaneous measurements 
of EMG, mechanomyography (MMG) and near-
infrared spectroscopy (NIRS) at a local position using 
a multi-layered wireless sensor that can be used to 
predict muscle fatigue. In the dynamics of running 
on a treadmill and strength exercises a recently 
developed integrated quadriceps oximetry system was 
implemented in which regional muscle oxyhemoglobin 
saturation and sEMG data were measured [52].

Positive correlations were found between the 
EMG signals and the fners during the recording of 
oxygen consumption and muscular activity of the 
left calf muscle among the participants, where the 
signal correlations are with the most active and least 
active lifestyles [53]. This leads to a correlation during 
dynamic movements in the signals of EMG and fNIRS 
during exercise. 

The existence of these associations, which can be 
described as positive and important, is a clear guide 
towards the formation of a hybrid system, which is 
what this article seeks and this quest is extended to 
further laboratory studies in order to investigate the 
relationship between brain activity and the performance 
of motor tasks and can be targeted for clinical trials.

In the operation of the EMG system alone, 
improvement in control performance requires the 
addition of more EMG sensor nodes, but this method 
is immaterial and impractical for people with limb 
disability due to atrophy or insufficiency of the 
remaining muscles [54]. Additionally, prostheses 
should be lightweight, but the improvement in control 
performance is offset by complexity, excess weight 
and a more expensive price when adding sensory 
nodes, whereas in the philosophy of prosthetics control 
interfaces should be very perfect, limited sensory 
channels and computational complexity [55]. Results 
of previous studies of systems in their hybrid state that 
used the most common methods and classifiers are 
shown in Table 2. 

Hardware, software and algorithms used 
for signal processing 

When the brain is activated by any of the triggers, 
the signal reception stage begins. The acquired signal 
is impure mixed with noise, artifacts and other effects, 
therfore, the acquired signal goes through different 
stages and here the role of artificial intelligence 
represented by neural networks enters towards 
filtering, analysis and classification up to the stage of 
real-world application. All triggers of the motor cortex 
with different commands cause a change in hemoglobin 
concentration based on the stimulus that triggered 
brain activity. The triggers to activate the motor cortex 
should be motor triggers. What we would like to point 
out is that the signal dynamics obtained using hybrid 
systems concepts go through the same steps as the 
signal dynamics obtained using independent systems 
concepts, as shown in Fig. 3.

A modern (software and hardware-based BCI) is a 
system based on artificial intelligence that can process 

brain activity in real time and recognise a certain finite 
set of central nervous system activity patterns [2]. 

One of the current and promising approaches 
to analysing neurophysiological signals is machine 
learning are machine learning (ML) and reservoir 
computing (RC). Machine learning approaches 
have traditionally fallen into four broad categories, 
depending on the nature of the input data and the 
learning strategy shown in Fig. 4.

These methods involve analyzing data without prior 
knowledge of the data source, i.e., data not associated 
with the model. In other words, the underlying 
mathematical model (or dynamical system) that 
generates the time series is unknown. At the same time, 
machine learning can build this model from sampled 
data, known as 'training data'. Thus, these methods, 
trained on a reasonable and representative amount of 
training data, can perform various tasks (classification, 
detection, prediction) based on the newly acquired 
data [3]. 

The challenges can exist at any stage of the signal, 
feature extraction is also not without challenges because 
it depends heavily on previous complex knowledge 
over time, and this leads to the risk of losing the 
information that the biological signal carries [60, 61]. 
Feature extraction methods vary from one technique 
to another, some pass through multiple stages, such 
as EEG, where brain signals can be filtered in three 
bands, and some are limited to one stage, such as 
fNIRS, where brain signals can be filtered in one band 
to improve signal quality for later analysis [45, 62].

Apparently the language of hybridisation is not 
limited to technology, but this can also extend to signal 
program stages. In [43], a combination consisting 
of wavelength range decomposition with canonical 
correlation analysis to correct for motion artifact of 
single channel EEG and fNIRS signals performed 
better than using wavelength range decomposition 
independently. 

The performance preference of single-method 
and mixed methods using the conventional whole 
optimization algorithm the classification accuracy was 
equal to 90,37; 7,66 % and binary improved whale 

Fig. 3. Dynamic stages of the signal

Fig. 4. Basics of machine learning in its four strategies
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optimization algorithm showed high classification 
accuracy equal to 94,22; 5,39 % which means that 
the classification performance increased by 3,85 %  
compared to the traditional whale optimization 
algorithm [63].

Discussion
Perhaps the most prominent systems in the fields of 

scientific research and the most common towards the 
transformation of mental commands into movement are 
EEG, EMG and fNIRS. These technologies with their 
individual uses face a clear deficit in the formation 
of a comprehensive system but these systems can be 
combined to create an integrated control system. For 
example, both EEG, EMG rely on muscle activity, 
whereas muscle activity may not be available if the 
muscle is damaged or lost [64, 65]. 

The fNIRS technique is based on chemical processes 
(blood oxygen level independent (BOLD). That 
means meauring the concentrations of hemoglobin 
and deoxyhemoglobin in the sense that they do not 
depend on muscle activity and therefore can share 
their positive characteristics to compensate for the 
negative characteristics in the EEG technique or the 
EMG technique.

After a detailed breakdown of the advantages and 
disadvantages of the above methods by comparing 
the results of the technologies found that the hybrid 
prosthetic management system produced more accurate 
results than each system individually [66]. The most 
likely advantage of the hybrid system is that one of the 
two technologies compensates for the shortcomings of 
the other. In the case of the software system, the results 
of the binary logarithms were better than those of the 
individual logarithms [67]. Thereby, it is concluded 
that the results obtained with hybrid systems hold 
great promise and are extremely encouraging for the 
development of a (software-based) prosthetic control 
system.

Conclusion
Accurate control of prosthetic limbs is one of the 

biggest challenges currently existing in the scientific 
field. Measuring brain activity and translating it into 
commands to control machines and devices using 
only thoughts is extremely difficult. However, modern 
technology has penetrated significantly in this field and 
has made impressive progress, particularly in machine 
learning and related branches such as neural networks 
and others and their relationship with medical methods 
as EEG, EMG and fNIRS. Each of these methods has 
its own characteristics and shortcomings that have led 
to its lack of effectiveness in controlling prosthetics.  
A hybrid system of these technologies may be a solution 
for achieving higher efficiency in prosthetic control.

It should be noted that future developments for a 
hybrid system of prosthetic control are not limited to 
the mentioned technologies but may extend to other 
technologies as well. EEG, EMG, and fNIRS techniques 
have proven to be relatively successful in prosthesis 
control. Additionally, fNIRS is most convenient 
when combined with EEG and EMG as confirmed by 
numerous recent studies. In the future, this will be an 
incentive to investigate these techniques independently 
or in hybrid form, as they are the closest and most 
convenient to address each other's shortcomings, 
leading to a successful hybrid prosthesis management 
system.

Therefore, it can be summarized more succinctly 
as follows: 

—  EEG, EMG and fNIRS systems are still in 
their individual state in the circle of research and 

experimental studies in endeavouring to find a control 
system for prosthetic limbs. 

—  The combination of  EEG with fNIRS is more 
superior than the individual system (when EEG is used 
individually or fNIRS is used individually).

—  The combination of EMG with fNIRS is more 
superior than the individual system (when EMG is used 
individually or fNIRS is used individually).

—  The principle of operation of EEG, as well as 
EMG depends on muscular activity, and this activity 
may not be available, while the principle of operation 
of fNIRS is based on chemical processes that makes it 
the most suitable to be a complementary tool with EEG 
or with EMG to create the most promising system for 
controlling and restoring lost functions.

—  There are no studies that indicate the superiority 
of the EEG with fNIRS system over the EMG with 
fNIRS system and this is a positive indicator for future 
studies to find a standardised and comprehensive 
control system for prosthetic limbs. 
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ПЕРСПЕКТИВНЫЕ СИСТЕМЫ 
ДЛЯ УПРАВЛЕНИЯ 
ПРОТЕЗАМИ: ОБЗОР
Люди с ограниченными возможностями в условиях стремительной научно-
технической революции надеются, что она преодолеет лишь оказание им 
поддержки и найдет подходящие решения, чтобы вести нормальную жизнь. 
Взаимодействие наук между собой учитывает проблему физических недо-
статков и, в частности, потерю как верхних, так и нижних конечностей. Совре-
менные протезы являются продуктом пересечения науки и технологической 
революции и все еще находятся на пути своего становления, поскольку со-
держат исполнительные механизмы, которые могут управляться сигналами 
мозга по принципу нейроинтерфейсов. Методы нейровизуализации, такие как 
электромиография, функциональная инфракрасная спектроскопия и электро-
энцефалография, являются превосходными методами управления этими со-
временными протезами, которые можно смоделировать по двум функциям,  
а именно по независимой работе и гибридной работе. В свете этих данных ста-
тья рассматривает эти системы в их индивидуальных и гибридных состояниях. 
Кроме того, в статье указывается, какой из этих методов может быть выбран 
в качестве предпочтительной системы. Область применения методологии ис-
следования ограничена методами нейровизуализации в отношении сценариев 
неврологической реабилитации и восстановления утраченных функций. Обзор 
имеет три направления. Первое направление собирает, обобщает и оценива-
ет информацию из соответствующих исследований, опубликованных за по-
следнее десятилетие. Второе представляет важные результаты предыдущих 
экспериментальных результатов в этой области в отношении текущих иссле-
дований. Исследование было проведено систематически, чтобы предоставить 
всем экспертам и ученым полное представление и основанные на доказатель-
ствах методы управления протезами. Третья часть заключается в выявлении 
широкой области знаний, требующей дальнейшего изучения, и отслеживании 
последовательности научных достижений в этих системах и возможности ин-
теграции между собой для создания наиболее перспективной системы управ-
ления протезами. 

Ключевые слова: инвалидность, электроэнцефалография, электромиография, 
функциональная инфракрасная спектроскопия, гибридный интерфейс мозг-
компьютер, система управления, операторы, протезы.
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