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ПОИСК ОПТИМАЛЬНЫХ 
ЗНАЧЕНИЙ ПАРАМЕТРОВ 
РЕЖИМА ПРОВОЛОЧНОЙ 
ЭЛЕКТРОЭРОЗИОННОЙ 
ОБРАБОТКИ ДЕТАЛЕЙ 
ИЗ ЦИРКОНИЕВОГО СПЛАВА Э110
В статье предложен метод расчета оптимальных параметров режима про-
волочно-электроэрозионной обработки циркониевого сплава Э110 с исполь-
зованием ротатабельного центрального композиционного плана второго по-
рядка. Рассмотрено влияние ключевых факторов обработки, таких как время 
импульса, пауза между импульсами и напряжение межискрового зазора,  
на толщину дефектного слоя и время обработки. Показана возможность ис-
пользования регрессионных моделей для прогнозирования параметров об-
работки и оптимизации их значений. Полученные результаты применимы для 
повышения производительности и качества обработки сложных деталей. По-
лучен диапазон оптимальных параметров: ON — от 4,554 мкс до 4,932 мкс, 
OFF — от 8,842 мкс до 11 мкс и SV — 50 В.

Ключевые слова: электроэрозионная обработка, планирование эксперимента, 
циркониевый сплав, параметр, режимы, оптимизация, моделирование.

Введение. В современной медицине активно 
используются биотехнические изделия, контакти-
рующие с тканями организма и биологическими 
жидкостями. Одним из основных материалов, при-
меняемых для изготовления и покрытия подобного 
рода изделий, является циркониевый сплав Э110, 
который обладает высокими эксплуатационными 
характеристиками. Покрытие деталей этим спла-
вом делает их биосовместимыми, что расширяет 
возможности применения в медицине. К тому же 
материал отличается высокой коррозионной стой-
костью и механической прочностью [1–3].

При изготовлении деталей из сплава Э110 ши-
роко используется метод проволочной электроэро-
зионной обработки (ПЭЭО). ПЭЭО особенно эф-
фективна для сложных форм, твердых материалов 
и ситуаций, где традиционные методы оказываются 
сложными или малоэффективными. Одним из её 
преимуществ является исключение деформации по-
верхностей тонкостенных деталей [4].

В обзорных работах авторов [5, 6], с акцентом  
на параметры, способствующих повышению про-
изводительности, представлены актуальные тенден-
ции исследований в области ПЭЭО. Кроме того, 
в исследовании [7] отмечается важность анализа 
глубины и фазового состава дефектного слоя. Этот 
слой формируется из-за переноса материала элек-
трода и продуктов разложения диэлектрической 
жидкости на поверхность обрабатываемых изде-
лий, что является ключевым критерием качества 
обработки.

Известны исследования, направленные на поиск 
оптимальных значений параметров режима ПЭЭО, 
таких как время паузы между импульсами (OFF), 
напряжение межискрового зазора (SV), время дли-
тельности импульса (ON), пиковый ток (I) и натя-
жение проволоки (WT) для достижения требуемых 
параметров качества обрабатываемых деталей [8], 
однако исследования проводились не на циркони-
евых сплавах.
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Свойства материалов, применяемых при элек-
троэрозионной обработке, играют значительную 
роль. В работе [9] выявлена связь между теплопро-
водностью материала и его эрозионной стойкостью, 
что влияет на скорость обработки.

Для оптимизации параметров режима ПЭЭО 
применяются различные методы дисперсионного 
анализа — Analysis of variance (ANOVA). Это по-
зволяет улучшить качество деталей, изготовленных 
из различных материалов, включая сплавы, супер-
сплавы и композиты, после их обработки методом 
ПЭЭО [8].

Дисперсионный анализ — это статистический 
метод, который используется для сравнения сред-

них значений двух или более выборок. Дисперсион-
ный анализ является инструментом, который может 
использоваться в статистическом анализе для оцен-
ки влияния исследуемого фактора на зависимую 
переменную. Это помогает установить, является ли 
фактор значимым, и позволяет идентифицировать 
взаимодействие между переменными.

Помимо дисперсионного анализа инструментом 
для поиска оптимальных параметров режимов раз-
личных технологических процессов используется 
методология поверхностного анализа — Response 
surface method (RSM). Метод фокусируется на от-
ношениях между откликом и факторами, которые 
являются переменными в регрессионной модели. 
Он помогает определить оптимальные условия для 
многовариантной системы.

Для проволочно-вырезной электроэрозионной 
обработки особенно важны точность и качество об-
работки поверхности. Поэтому применение диспер-
сионного анализа и методологии поверхностного 
анализа может значительно улучшить подбор опти-
мальных параметров для ПЭЭО [10].

Цель работы — поиск оптимальных параме-
тров режима ПЭЭО циркониевого сплава Э110 для 
уменьшения глубины дефектного слоя и повыше-
ния производительности обработки.

Материалы и методы исследования. Для опре-
деления оптимальных значений технологических 
параметров режима электроэрозионной обработ-
ки циркониевого сплава Э110 с целью достижения 
наименьшей толщины дефектного слоя при наи-
меньшем времени обработки использовался ро-
татабельный центральный композиционный план 
(РЦКП) второго порядка [11–14].

Ротатабельные планы, как и ортогональные, яв-
ляются композиционными, поскольку позволяют 
сохранить экспериментальную информацию, по-
лученную с помощью полного факторного экспе-
римента или дробного факторного эксперимента, 
которую исследователь далее дополняет опытами  
в «звездных» точках и в центре плана.

Критерий ротатабельности является более силь-
ным критерием оптимальности центрального ком-
позиционного плана по сравнению с критерием 
ортогональности. Ротатабельный план позволяет 
получить модель, способную предсказывать значе-
ние функции отклика с одинаковой точностью не-
зависимо от направления и на равных расстояниях 
от центра плана. Поэтому метод РЦКП позволяет 
получить более точное математическое описание 
технологического процесса, благодаря увеличению 
числа опытов в центре плана и специальному вы-
бору величины «звездного» плеча α.

Эффективность и простота факторных экспе-
риментов делают их наиболее часто используемы-
ми для выбора уровней варьирования факторов  
и одновременного их изменения с целью изучения 
влияния каждого из факторов на технологический 
процесс [11–14]. Осуществление РЦКП второго 
порядка включает в себя двадцать опытов для ко-
личества факторов равного трем. Факторы, уровни, 
интервалы варьирования факторов и матрица пла-
нирования РЦКП второго порядка для трех факто-
ров представлены в виде табл. 1 и табл. 2.

В качестве варьируемых факторов были выбра-
ны следующие: время импульса ON, мкм — коди-
рованное значение (A); пауза между импульсами 
OFF, мкс — кодированное значение (B), межискро-
вой зазор SV, В — кодированное значение (C). Сле-
дующие параметры ПЭЭО — скорость промотки 

Таблица 1

Факторы, уровни и интервалы варьирования

Уровень фактора

Факторы

A
(ON, мкс)

B
(OFF, мкм)

C
(SV, В)

Основной (0) 4,5 9,25 50

Интервал 
варьирования

2 1,75 5

Верхний (+1) 6,5 11 55

Нижний (–1) 2,5 7,5 45

В звездных точках:

+1,68179 8,73 13 62

–1,68179 0,5 5 38

Таблица 2

Матрица планирования эксперимента 
для РЦКП второго порядка

№ 
опыта

Кодированные значения 
факторов

Отклики

A B C t, с h, мкм

1 –1 –1 –1 t
1

h
1

2 1 –1 –1 t
2

h
2

3 –1 1 –1 t
3

h
3

4 1 1 –1 t
4

h
4

5 –1 –1 1 t
5

h
5

6 1 –1 1 t
6

h
6

7 –1 1 1 t
7

h
7

8 1 1 1 t
8

h
8

9 –1,68179 0 0 t
9

h
9

10 1,68179 0 0 t
10

h
10

11 0 –1,68179 0 t
11

h
11

12 0 1,68179 0 t
12

h
12

13 0 0 –1,68179 t
13

h
13

14 0 0 1,68179 t
14

h
14

15 0 0 0 t
15

h
15

16 0 0 0 t
16

h
16

17 0 0 0 t
17

h
17

18 0 0 0 t
18

h
18

19 0 0 0 t
19

h
19

20 0 0 0 t
20

h
20
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проволоки WS = 13 м/мин; давление помпы WP =  
=12 Н; натяжение проволоки WT = 1,5 МПа.

Ожидается, что в результате использования 
РЦКП второго порядка для трехфакторного экспе-
римента будут получены уравнения регрессии сле-
дующего вида:

y = b
0
 + b

1
A + b

2
B + b

3
C+ b

12
AB + b

13
AC + 

b
23
BC + b

11
A2 + b

22
B2 + b

33
C2,           (1)

где b
0
, b

1
, b

2
, b

3
, b

11
, b

22
, b

33
, b

12
, b

13
, b

23
 — коэффици-

енты уравнения регрессии.
Для получения уравнений регрессии и контур-

ных кривых поверхностей равного отклика было 
использовано приложение DesignExpert13. Для гра-
фической интерпретации полученных результатов 
и поиска оптимальных технологических режимов 
электроэрозионной обработки циркониевого спла-
ва Э110 была использована методология поверх-
ности равного отклика. Методология поверхности 
равного отклика позволяет определить взаимосвязи 
между входными факторами процесса и одним или 
несколькими измеренными откликами. Интерпре-
тация результатов проводилась с использованием 
модуля дисперсионного анализа (ANOVA).

Проволочно-электроэрозионная обработка. 
Для проведения экспериментальных исследований 
использовался электроэрозионный станок Sodick 
VZ300L. Скорость обработки измерялась по факти-
ческому времени работы программы, а глубина де-
фектного слоя определялась с помощью растрового 
электронного микроскопа.

Были подготовлены образцы, представляющие 
собой кубы размером 5мм × 5мм × 5мм. Материал 

заготовки — циркониевый сплав марки Э110, со-
стоящий из Zr — основа, Nb — 1 %, примесей O, Fe, 
Hf, Si, Ca, Cr содержание элементов не более 0,25 % 
(в сумме). Материал электрода-инструмента сплав, 
включающий в себя Cu — 65 %, Zn — 35 %. Диаметр 
проволоки 0,2 мм.

ПЭЭО образцов осуществлялась согласно режи-
мам, указанным в табл. 2.

Микроструктурный анализ. После ПЭЭО цир-
кониевых образцов с режимами, приведенными  
в матрице планирования, были получены микро-
шлифы, на которых отмечена толщина протравлен-
ного дефектного слоя. Травление производилось  
с помощью не характерного для циркониевых спла-
вов раствора 30 мл H

2
O + 30 мл HNO

3
 + 30 мл  

HCL + 30 мл HF.
Результаты проведения промышленного экспе-

римента и микроструктурного анализа. Результаты 
эксперимента приведены в табл. 3 и на рис. 1.

Исследование микрошлифов (рис. 1) позволило 
выявить, что с увеличением режимов обработки 
(увеличением параметра ON, уменьшением параме-
тра OFF и увеличением параметра SV) уменьшается 
время обработки, однако это влечет за собой увели-
чение толщины дефектного слоя.

В ходе проведения экспериментов было полу-
чено, что с увеличением времени длительности 
импульса уменьшается время обработки, при этом 
увеличивается и толщина дефектного слоя.

Результаты дисперсионного анализа (ANOVA). 
Важной частью любого промышленного экспери-
мента является оценка вклада каждого из факторов 
в отдельности на полученные отклики. Ниже рас-
смотрено влияние времени импульса (ON), паузы 
между импульсами (OFF) и напряжения межискро-

Таблица 3

Результаты проведенного промышленного эксперимента

№ 
опыта

Кодированные значения 
факторов

Натуральные значения 
факторов

Отклики

A B C ON, мкс OFF, мкм SV, В t, с h, мкм

1 –1 –1 –1 2,5 7,5 45 304 14

2 1 –1 –1 6,5 7,5 45 180 23

3 –1 1 –1 2,5 11 45 314 13

4 1 1 –1 6,5 11 45 138 22

5 –1 –1 1 2,5 7,5 55 347 14

6 1 –1 1 6,5 7,5 55 172 23

7 –1 1 1 2,5 11 55 407 13

8 1 1 1 6,5 11 55 180 22

9 –1,68179 0 0 0,5 9,25 50 450 10

10 1,68179 0 0 8,73 9,25 50 125 26

11 0 –1,68179 0 4,5 5 50 235 19

12 0 1,68179 0 4,5 13 50 250 18

13 0 0 –1,68179 4,5 9,25 38 206 18

14 0 0 1,68179 4,5 9,25 62 277 17

15 0 0 0 4,5 9,25 50 201 19,5

16 0 0 0 4,5 9,25 50 205 19

17 0 0 0 4,5 9,25 50 195 20,6

18 0 0 0 4,5 9,25 50 192 20

19 0 0 0 4,5 9,25 50 194 20,4

20 0 0 0 4,5 9,25 50 210 19
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                    17                                     18                                        19                                        20

Рис. 1. Протравленные образцы с указанием толщины дефектного слоя после каждого из опытов
 (номер фотографии соответствует номеру опыта из табл. 3)

                   1                                          2                                          3                                         4

                   5                                           6                                         7                                        8

                   9                                         10                                         11                                        12

                   13                                       14                                        15                                        16

вого зазора (SV) на время обработки (t) и толщину 
дефектного слоя (h).

Чтобы оценить влияние каждого фактора в от-
дельности, был проведен дисперсионный анализ 
(ANOVA) с использованием программного обеспе-
чения для статистического анализа DesignExpert 
13. Результаты ANOVA представлены в табл. 4, 5. 
Для каждого фактора было получено значение 
F-критерия и p-критерия. По величинам этих зна-
чений было сделано заключение о значимости каж-
дого фактора в отдельности. Визуально вклад каж-
дого фактора представлен в виде графиков на рис. 2  
и рис. 3.

Анализируя данные в табл. 4 и табл. 5, а также 
графики на рис. 2 и рис. 3, был сделан вывод, что 
время обработки и толщина дефектного слоя в зна-
чительной степени зависят от времени импульса. 

Так, для времени обработки значения F-критерия 
времени импульса составляют 1889,56 и 214,27 
для фактора в первом и втором порядках соответ-
ственно, для толщины дефектного слоя значение 
F-критерия времени импульса составляет 941,27 для 
фактора в первом порядке. Кроме этого, влияние 
напряжения межискрового зазора (возможно, что 
пауза между импульсами оказывает гораздо боль-
шее влияние, чем напряжение) на время обработки 
оценивается как достаточно высокое. Для времени 
обработки значение F-критерия напряжения ме-
жискрового зазора составляет 101,52 для фактора  
в первом порядке.

Согласно данным, полученным в результате 
ANOVA, было сделано заключение, что обе регрес-
сионные модели зависимости времени обработки (t) 
и глубины дефектного слоя (h) от времени импульса 
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(ON), паузы между импульсами (OFF) и напряжения 
межискрового зазора (SV) являются значимыми, по-
скольку значения p-критериев для моделей менее 
0,05 и значения среднеквадратичных отклонений R2 

не ниже 0,95 (табл. 6).
После исключения всех незначимых коэф-

фициентов уравнений регрессии со значением 
p-критерия больше 0,05 (табл. 4, табл. 5) окончатель-
ный вид уравнений выглядит следующим образом:

t = 199,67 – 153,76A + 35,64C – 36,77AB –

– 36,06AC + 35,36BC + + 84,77A2 + 39,77B2 +

+ 38,77C2,                          (2)

h = 19,75 + 7,75A – 0,6997B – 1,69A2 –

–1,19B2 – 2,19C2.                    (3)

Полученные уравнения регрессии могут быть 
использованы для назначения технологических па-
раметров режима электроэрозионной обработки 
циркониевого сплава Э110 и прогнозирования вли-
яния этих параметров на время обработки и толщи-
ну дефектного слоя.

Для перехода от кодированных значений факто-
ров к натуральным применяются выражения:

ON = 4,5 + 2A,                     (4)

OFF = 9,25 + 1,75B,                 (5)

SV = 50 + 5C.                    (6)

На рис. 4 представлены соотношения между фак-
тическими (actual) и прогнозируемыми (predicted) 
значениями времени обработки и глубины дефект-
ного слоя.

Для графической интерпретации полученных 
уравнений регрессии были построены контурные 
кривые поверхностей равного отклика для време-
ни обработки и глубины дефектного слоя (рис. 5,  
рис. 6).

Анализируя рис. 5, стоит отметить, что увели-
чение времени импульса (ON) и увеличение паузы 
между импульсами (OFF) ведет за собой уменьше-
ние времени обработки (рис 5а, б, в). Увеличение 
напряжения искрового (SV) зазора влияет незна-
чительно, однако при одновременном увеличении 
времени длительности импульса (ON) происходит 
снижение времени обработки (рис. 5г, д, е). Также, 
анализируя рис. 6, стоит отметить, что увеличение 
времени импульса ведет к увеличению толщины де-
фектного слоя.

Для нахождения оптимальных значений техно-
логических параметров режима электроэрозионной 
обработки циркониевого сплава Э110 были постро-
ены совмещенные контурные кривые поверхностей 
равного отклика (рис. 7). Численные решения пред-
ставлены в виде табл. 7.

Таблица 4

Результаты дисперсионного анализа (ANOVA) для времени обработки

Факторы
Сумма 

квадратов
Среднеквадратичное 

отклонение (Meansquare)
Значение

F-критерия (F-value)
Значение 

p-критерия (p-value)

A 1,142E+05 1,142E+05 1889,56 < 0,0001

B 274,49 274,49 4,54 0,0589

C 6132,93 6132,93 101,52 < 0,0001

AB 1352,00 1352,00 22,38 0,0008

AC 1300,50 1300,50 21,53 0,0009

BC 1250,00 1250,00 20,69 0,0011

A² 12944,27 12944,27 214,27 < 0,0001

B² 2848,93 2848,93 47,16 < 0,0001

C² 2707,45 2707,45 44,82 < 0,0001

Таблица 5

Результаты дисперсионного анализа (ANOVA) для глубины дефектного слоя

Факторы
Сумма 

квадратов
Среднеквадратичное 

отклонение
Значение

F-критерия
Значение 

p-критерия

A 289,78 289,78 941,27 < 0,0001

B 2,36 2,36 7,68 0,0198

C 0,2071 0,2071 0,6727 0,4312

AB 0,0000 0,0000 0,0000 1,0000

AC 0,0000 0,0000 0,0000 1,0000

BC 0,0000 0,0000 0,0000 1,0000

A² 5,12 5,12 16,65 0,0022

B² 2,54 2,54 8,24 0,0167

C² 8,61 8,61 27,98 0,0004
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Рис. 2. Вклад каждого фактора для времени обработки: 
а — при кодированных значениях факторов –1; б — при кодированных значениях 

факторов 0; в — при кодированных значениях факторов +1

Рис. 3. Вклад каждого фактора для глубины дефектного слоя: 
а — при кодированных значениях факторов –1; б — при кодированных значениях 

факторов 0; в — при кодированных значениях факторов +1
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Таблица 6

Результаты оценки значимости полученных уравнений регрессии

Параметр
Отклик

Время обработки (t) Толщина дефектного слоя (h)

Значение p-критерия < 0,0001 < 0,0001

Значение среднеквадратичного
отклонения R2 0,9957 0,9900

Уточненное значение 
среднеквадратичного отклонения R2 0,9919 0,9811

Предсказанное значение 
среднеквадратичного отклонения R2 0,9784 0,9721

Аккуратность 55,9529 39,4910

                               а                                                                   б

Рис. 4. Диаграммы рассеяния:
 а — для времени обработки; б — для глубины дефектного слоя

Рис. 5. Контурные кривые поверхностей равного отклика для времени обработки: 
а — фактор C = –1; б — фактор C = 0; в — фактор C = +1; г — фактор B = –1; 
д — фактор B = 0; е — фактор B = +1; ж — фактор A = –1; з — фактор A = 0; 

и — фактор A = +1
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Анализ уравнения показал, что минимально за-
трачиваемое на обработку время 196,052 секунд до-
стигается при следующих кодированных значени-
ях факторов: ON = 0,027; OFF = 0,489; SV = 0. 
В натуральных значениях: время длительности им-
пульса ON = 4,554 мкс; пауза между импульсами  
OFF = 10,11 мкс; величина напряжения межискро-
вого зазора SV = 50 B, при этом толщина дефектно-
го слоя равна 19,8 мкм.

Эффект от применения оптимальных режимов 
проволочно-вырезной электроэрозионной обработ-
ки заключается в сокращении общего времени, за-
трачиваемого на изготовление катодов для магне-
тронного распыления.

Наиболее важным критерием поиска оптимума 
считается толщина дефектного слоя, так как сни-
жение толщины дефектного слоя позволит затра-
чивать меньше времени на финишную обработку. 
В результате совмещения двух графиков полу-
чен диапазон оптимальных значений параметров:  
ON = 4,554 –4,932 мкс, OFF = 8,842–11 мкс,  
и SV = 50 В.

Стоит отметить, что для получения наименьшей 
толщины дефектного слоя и минимально допусти-
мого времени обработки были рассчитаны пара-
метры ON = 4,6 мкс, OFF= 10 мкс и SV = 50 В.  
На рис. 8 изображена толщина дефектного слоя 
(19,2 мкм), полученная на образце, обработанном  
с оптимальными параметрами. Полученные резуль-
таты свидетельствуют о расходимости математиче-
ской модели с данными, полученными эксперимен-
тально, не более чем в 5 %.

Рис. 6. Контурные кривые поверхностей равного отклика для глубины дефектного 
слоя: а — фактор C = –1; б — фактор C = 0; в — фактор C = +1; г — фактор B = –1; 

д — фактор B = 0; е — фактор B = +1; ж — фактор A = –1; з — фактор A = 0; 
и — фактор A = +1

Рис. 7. Совмещенные контурные кривые 
поверхностей равного отклика

Рис. 8. Протравленный образец 
с указанием толщины дефектного 
слоя, обработанный с помощью 
оптимальных режимов ПЭЭО
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Выводы. Было выявлено, что с увеличением 
режимов обработки (увеличением параметра ON, 
уменьшением параметра OFF и увеличением пара-
метра SV) уменьшается время обработки, однако 
это влечет за собой увеличение толщины дефект-
ного слоя. Получен диапазон оптимальных пара-
метров: ON — от 4,554 мкс до 4,932 мкс, OFF —  
от 8,842 мкс до 11 мкс и SV — 50 В.

Определены оптимальные режимы для прово-
лочно-вырезной электроэрозионной обработки 
циркониевого сплава Э110 латунным электродом-
инструментом диаметром 0,2 мм, с помощью со-
поставления данных, полученных в ходе сопостав-
ления двух контурных кривых в один график. Для 
получения наименьшей толщины дефектного слоя 
и минимально допустимого времени обработки рас-
считаны параметры ON = 4,6 мкс, OFF = 11 мкс  
и SV = 50 В.

После достижения наименьшей толщины де-
фектного слоя при наиболее высокой в данном 
случае скорости резания необходимо произвести 
удаление полученного дефектного слоя наиболее 
подходящим методом. Малая толщина дефектного 
слоя позволяет сделать вывод о том, что на финиш-
ную операцию будет затрачено немного времени.
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