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ИССЛЕДОВАНИЯ 
НА ИЗНОСОСТОЙКОСТЬ 
КОНСТРУКЦИИ 
РАДИАЛЬНОГО ПОДШИПНИКА 
С УЧЕТОМ РЕОЛОГИЧЕСКИХ СВОЙСТВ
МИКРОПОЛЯРНОГО 
СМАЗОЧНОГО МАТЕРИАЛА
Статья посвящена разработке и анализу модели движения микрополярного 
смазочного материала в рабочем зазоре радиального подшипника скольже-
ния с фторопластсодержащим антифрикционным композиционным полимер-
ным покрытием и с канавкой на опорной поверхности.
Новые модели получены на базе классических уравнений в приближении для 
«тонкого слоя» и уравнения неразрывности, описывающих турбулентный ре-
жим движения смазочного материала с микрополярными реологическими 
свойствами. Результаты проведенного численного анализа полученных мо-
делей существующих эксплуатационных характеристик позволили получить 
количественную оценку эффективности опорного профиля с фторопласт-
содержащим антифрикционным композиционным полимерным покрытием  
с осевой канавкой.
Для завершения комплекса исследований и верификации теоретических раз-
работок были выполнены экспериментальные исследования.
Новизна работы заключается в конкретизации методики инженерных расчетов 
конструкции эффективного радиального подшипника с антифрикционным по-
лимерным покрытием с осевой канавкой на опорной поверхности подшипни-
ковой втулки при учете зависимости реологических свойств микрополярного 
смазочного материала от давления и температуры в турбулентном режиме, 
позволяющей оценить величину основных эксплуатационных характеристик: 
гидродинамического давления, нагрузочной способности и коэффициента 
трения, а также  расширить область практического применения моделей для 
инженерных расчетов.
Таким образом, конструкция радиального подшипника с полимерным по-
крытием опорного профиля, канавкой шириной 3 мм обеспечила стабиль-
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Введение. Для выполнения своих функций под-
шипники скольжения должны обладать высокими 
показателями теплостойкости, износостойкости  
и пределами выносливости материала подшипников 
скольжения. Условия работы гидродинамических 
опор скольжения зависят от скоростного и нагру-
зочного режимов эксплуатации, толщины смазоч-
ного слоя, температуры и давления в рабочем зазо-
ре, расхода смазочного материала и коэффициента 
трения.

Применение современных высокотехнологич-
ных смазочных материалов является ключевым 
фактором для снижения потерь на трение в сопря-
жениях и повышения энергоэффективности трибо-
систем в целом.

Задача расчета для тяжелонагруженных узлов 
трения основана на неклассической теории гидро-
динамического смазывания, описывающей пове-
дение неньютоновских жидкостей в тонкой сма-
зочной пленке, разделяющей поверхности трения 
трибосопряжения. Учитывая современные тенден-
ции в производстве смазочных материалов и по-
стоянный прогресс в области разработки противо-
износных и иных присадок, становится тяжелее 
разработать математические модели, описывающие 
поведение смазочных материалов на основе теории 
смазывания, опирающейся на реологическое пове-
дение смазочного материала с учетом условия по-
дачи смазочного материала, тепловых процессов, 
геометрии опорного узла и совокупности всех дей-
ствующих нагрузок.

В исследовании M. Deligant и др. [1] предло-
жена теоретическая модель, описывающая потери  
на трение в подшипниках скольжения. Полученные 
результаты практически совпали с итогами экспе-
римента, что позволяет прогнозировать величину 
потери трения. В результате расчета установлено, 
что охлаждение подшипника происходит за счет 
теплопроводности подшипника, крутящий момент  
не является линейной функцией скорости. 

В работе [2] показано, что амплитуда прецес-
сии ротора радиального подшипника скольжения 
в любом режиме составляет менее 11 микрон, что 
указывает на отсутствие прямого контакта между 
опорным кольцом и ротором.

Результаты исследования S. C. Sharma и др. [3] 
изменения вязкости с учетом тепловых явлений ги-
бридного подшипника с прорезями показали, что 
коэффициенты подачи, жесткости и демпфирова-
ния, а также толщина смазочных материалов изме-
няются при учете тепловых эффектов.

B. Kucinshi и Filhon [4] представили исследова-
ние гидродинамического давления, распределения 
температур в подшипнике скольжения на границе 
раздела пленка/втулка, скорости потока жидкости, 
потерь мощности и толщины пленки жидкости.  
В результате установлено, что критическими па-
раметрами для высоконагруженных подшипников, 
работающих на низкой скорости, являются толщи-

на пленки смазочного материала и максимальное 
давление; для высокоскоростных, работающих при 
малой нагрузке, — максимальная температура.

Р. Khatok и H. C. Garg [5] проанализировали 
работу капиллярно-компенсированных гибридных 
подшипников с учетом тепловых эффектов и ми-
крополярного смазочного материала. Установлено, 
что для получения более реальных характеристик 
необходим учет тепловых эффектов, так как зна-
чительное влияние на работу вышеуказанных под-
шипников оказывает увеличение температуры.

Результаты исследований [6–8] посвящены 
расчету характеристик устойчивости гидродина-
мических опор коленчатых валов двигателей вну-
треннего сгорания с учетом параметров, характе-
ризующих износостойкость, теплонапряженность  
и усталостную долговечность.

В работах [9–10] предложен метод тепловой 
диагностики, позволяющий определить функции 
фрикционного тепловыделения и момента трения 
по замерам температур. Установлено, что распреде-
ление температуры по длине вала и опоре однород-
но, а влияние теплоотдачи от их торцовых поверх-
ностей незначительно и минимально. Необходимо 
описывать нестационарное температурное поле  
в рабочем зазоре двумерным уравнением теплопро-
водности.

Результаты исследования [11–18] посвящены 
разработке математических моделей тепловых про-
цессов в подшипниках скольжения с учетом обоб-
щения модели для одного подшипника. Для удобно-
сти инженерных расчетов формулы для нахождения 
температурного поля в подшипнике скольжения 
найдены с учетом предположения о постоянстве 
коэффициента разделения теплового потока на гра-
нице контакта между цапфой и втулкой.

Для определения поведения нового смазочно-
го материала, установления коэффициента и силы 
трения, а также тепловой мощности, выделяемой  
в жидкости, в работах [19–20] разработана элатоги-
дродинамическая теория смазывания, позволяющая 
более точно и универсально рассчитать тепловыде-
ление с учетом явлений, возникающих в смазочном 
слое.

В настоящее время при расчете тепловыделения 
также используются эмпирические зависимости 
[21–24] от геометрических параметров, условий 
эксплуатации и свойств применяемых смазочных 
материалов. Это обстоятельство подчеркивает важ-
ность разработки новых и повышения точности 
уже имеющихся расчетных моделей. 

Целью исследования является установление за-
висимости реологических свойств смазочного мате-
риала радиального подшипника скольжения с фто-
ропластсодержащим композиционным полимерным 
покрытием поверхности подшипниковой втулки  
с канавкой от давления и температуры.

Постановка задачи. Задача включает рассмо-
трение турбулентного движения микрополярного 

ное всплытие вала на гидродинамическом клине, что экспериментально под-
твердило правильность результатов теоретических исследований радиального 
подшипника диаметром 40 мм при скорости скольжения 0,3–3 м/с, нагрузке 
4,9–24,5 МПа.

Ключевые слова: радиальный подшипник, исследование износостойкости, ан-
тифрикционное полимерное композиционное покрытие, канавка, верифика-
ция, турбулентный режим течения, зависимость вязкости от давления и тем-
пературы.
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несжимаемого смазочного материала в рабочем за-
зоре бесконечного радиального подшипника сколь-
жения. 

Вал вращается с угловой скоростью Ω, а под-
шипниковая втулка неподвижна. Предполагается, 
что пространство между эксцентрично расположен-
ным валом и подшипником полностью заполнено 
смазочным материалом, а на подшипниковую втул-
ку нанесено полимерное покрытие.

В полярной системе координат (рис. 1) с по-
люсом в центре подшипниковой втулки уравнение 
контура вала, втулки и ее поверхности с полимер-
ным покрытием, имеющим осевую канавку, запи-
шем в виде
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Установлено, что вязкостные характеристики 
микрополярного смазочного материала зависят  
от давления и температуры по следующим законам 
[25]:

 .    (2)

Исходными базовыми уравнениями с учетом (2) 
являются уравнение движения несжимаемой жид-
кости для «тонкого слоя» и уравнение неразрыв-
ности 

 

 .                (3)

Система уравнений (3) решается при следующих 
граничных условиях: 

 
 

 .                      (4)

Для удобства решения применяем стандартную 
методику перехода к безразмерным величинам:

 

                                                    ,

 .        (5)

Учитывая выражения (5), из (3) и (4) получим 
систему безразмерных уравнений с соответствую-
щими граничными условиями:

 

	            (6)
 

v=1, u=–ηsin, =0 при r=h();
v=0, u=0, =0 при r=0, 

1 
   

2
;

v=v*(), u=u*(), =0 

при r=η
2
, 0    

1
 и 

2 
   2π;

 .         (7)

К граничным условиям добавляем:

                                                            .

Полагаем, что функции u*() и v*() определяют-
ся соотношениями

 			   .       (8)

Учитывая малость зазора, осредняем второе 
уравнение системы (6) по толщине смазочного слоя:

   ,                    .         (9)

Автомодельное решение задачи (9) с учетом гра-
ничных условий ищем в виде

 

Рис. 1. Расчетная схема
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Подставляя (10) в (9) с учетом граничных усло-
вий (6)–(7), получим следующую систему уравне-
ний:

 
 

                                                      , i=1,3;

 .           (11)

Система уравнений (11) решается при следую-
щих граничных условиях:

 
     

 .           (12)

Интегрируя уравнение (11) с учетом граничных 
условий (12), в результате получим следующее вы-
ражение:

 
 
 
 

 .     (13)
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 следует, что

 b
1
 = b

2
 = b

3
 = 6.                  (14)
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имеем:

 
 

        ,            (15)
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Безразмерное гидродинамическое давление  
в смазочном слое определим из уравнения

 

 .             (16)

Для решения уравнения (16) сначала определим 
μ() как функцию, зависящую от .

При определении μ() используем выражение, 
отражающее закономерность изменения скорости 
диссипации энергии смазочной среды:

  	 	 (17)

Тогда повышение температуры определяется 
выражением:

 ,    (18)
 

.           (19)

Продифференцируем по  выражение μ = eαp–βT,  
получим

 

 .                  (20)

С учетом уравнения (16) для определения μ() 
приходим к следующим дифференциальным урав-
нениям:
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Решая уравнение (22) относительно μ(), с точно-
стью O(η2), O(η

1
2), O(η

2
2),  O(ῆ2), O(ηη

1
), O(ηῆ), O(η

2
η), 

O(η
2
ῆ) включительно, получим следующие аналити-

ческие выражения:
 
 
 ;
 

 
 
  		  (23)

С учетом (16) и (23) безразмерное гидродинами-
ческое давление определяется выражением:

 
 
 
 

 

 		  (24)
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Интегрируя эти уравнения, получим:
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Зная значения гидродинамического давления  
и скорости, находим аналитические выражения для 
несущей способности и силы трения:

 

                                                            .
 

 .    (25)

Численный анализ полученных расчетных 
моделей был проведен при скорости Ω = 100– 
2400 с–1, θ

2
 – θ

1
 = 5,74–22,92 град., σ = 4,9– 

24,5 МПа, μ
0 
= 0,0707–0,0076 Нс/м2, α = 0–1, β =  

=0–1, Т =25–100 С,  = 0,05∙10–3–0,07∙10–3 м, 
r
0
 = 0,01995–0,04993 м, P

g
 = 0,2 МПа. Результа-

ты теоретических и экспериментальных испытаний 
коэффициента трения при использовании микропо-
лярного смазочного материала приведены для ско-
рости 0,3 м/с (рис. 2). 

Проведение экспериментов. Эксперименталь-
ное исследование состоит из верификации разра-
ботанной расчетной модели с маслосодержащей 
канавкой; комплекса экспериментальных исследо-
ваний с новой конструкцией опорной поверхности 
подшипниковой втулки с антифрикционным поли-

мерным покрытием, имеющим канавку, с темпера-
турой плавления 327 С.

Триботехнические экспериментальные иссле-
дования радиальных подшипников проводились  
на модернизированной машине трения ИИ 5018 
(рис. 3, 4).  

Образцы были изготовлены в виде частичных 
вкладышей из кольцевой заготовки по центрально-
му углу 60 . На их поверхности наносились поли-
мерные покрытия и канавки на глубину покрытия, 
равную 0,55 мм. Вал изготовлен из стали 45 (ГОСТ 
1050-2013). Кроме того, колодки имели отверстия 
для термопар (рис. 3).

Результаты исследований. В результате теоре-
тического исследования установлено, что несущая 
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Рис. 2. Зависимость коэффициента трения в подшипнике с канавкой
от параметров, характеризующих вязкость смазочного материала, 

температуры и ширины канавки

Рис. 3. Определение объемной 
температуры в паре трения 

«ролик–колодка»: 1, 2 — термопары

Рис. 4. Показания тепловизора при 
определении объемной температуры 

в паре трения «ролик–колодка» 
с фторопластсодержащим 

композиционным полимерным 
покрытием: 1 — колодкодержатель; 

2 — опытный образец; 
3 — ролик; 4 — контргайка; 

5 — термопара
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способность повышается примерно на 12–14 %,  
а коэффициент трения снижается на 8–10 % в диа-
пазоне исследованных режимов (табл. 1).

В процессе экспериментального исследования 
были установлены области рационального примене-
ния полученных моделей. Получен устойчивый ги-
дродинамический режим трения после двухминут-
ной приработки, при этом нагрузка увеличивалась 
ступенчато 5 раз до 24,5 МПа (табл. 2).

Обсуждение результатов. Теоретическим ис-
следованием установлено необходимое сечение ка-
навки на поверхности подшипниковой втулки для 
выхода подшипника в режим гидродинамического 
смазывания при заданной нагрузке.

После этого разработана расчетная модель, опи-
сывающая течение микрополярного смазочного ма-
териала в рабочем зазоре. При разработке модели 
учтена зависимость вязкости смазочного материала 
от давления и температуры. Полученные результа-
ты позволяют установить основные эксплуатацион-
ные характеристики.

Исследуемая конструкция работает следующим 
образом: при вращении цапфы в канавке возникает 
циркуляционное движение, при этом возникающая 
сила приподнимает цапфу, в результате чего обра-
зуется гидродинамический клин. Разработан теоре-
тически и подтвержден экспериментально новый 
способ разработки расчетных моделей, позволяю-
щий значительно расширить область применения  
в машиностроении, авиастроении, приборострое-
нии и т.д. — там, где требуется обеспечение гидро-
динамического режима смазывания.

Основные выводы
1.  В результате исследования достигнуто суще-

ственное расширение возможностей применения 
на практике таких расчетных моделей подшипника 

с полимерным покрытием с канавкой, работающе-
го в гидродинамическом режиме смазывания, по-
зволяющее провести оценку его эксплуатационных 
характеристик.

2.  Расчетные модели учитывают применение до-
полнительного смазывания полимерным покрытием 
и канавку на поверхности подшипниковой втулки.

3.  Применение исследованных радиальных под-
шипников скольжения с канавкой шириной 3 мм 
значительно повышает их несущую способность  
(на 12–14 %) и снижает коэффициент трения  
на 8–10 %.

4.  Конструкция подшипника с полимерным по-
крытием и канавкой шириной 3 мм обеспечила ста-
бильное всплытие цапфы, что экспериментально 
подтвердило правильность результатов теоретиче-
ских исследований.

Условные обозначения:
r
0
 — радиус вала; r

1
 — радиус подшипниковой 

втулки; h~   — высота канавки; e — эксцентриситет; 
ε — относительный эксцентриситет; μ

0
 — харак-

терная вязкость ньютоновской смазки; 
0
 и 

0
 — 

характерные вязкости микрополярной жидкости;  
μ' — коэффициент динамической вязкости смазоч-
ного материала; р' — гидродинамическое давление 
в смазочном слое; α', β' — постоянная эксперимен-
тальная величина; Т' — температура; I — механи-
ческий эквивалент тепла; λ — теплопроводность 

смазочного материала; 
δ

=η
l
 — конструктивный 

параметр; 
δ

=η
h~

2  — конструктивный параметр, 

характеризующий канавку; θ
1
, θ

2
  — соответствен-

но угловые координаты канавки; u*(θ) и v*(θ) — из-
вестные функции, обусловленные наличием поли-
мерного покрытия на поверхности подшипниковой 
втулки; Q — расход смазочного материала в еди-

Таблица 1

Результаты теоретического исследования поверхности подшипниковой втулки 
с фторопластсодержащим композиционным полимерным покрытием

№ σ, МПа

Угловые координаты (θ
2
 – θ

1
)

5,74 10,03 14,32 18,61 22,92

Коэффициент трения

1 4,9 0,008890 0,0112130 0,009200 0,0060000 0,00333000

2 9,8 0,005590 0,0055910 0,005753 0,0040850 0,00269650

3 14,7 0,002293 0,0023920 0,002306 0,0021705 0,00205700

4 19,6 0,002195 0,0022613 0,002204 0,0021136 0,00203793

5 24,5 0,002097 0,0021307 0,002102 0,0020570 0,00201887

Таблица 2

Результаты исследования поверхности подшипниковой втулки 
с фторопластсодержащим композиционным полимерным покрытием

№

Режим Коэффициент трения
Погреш- 
ность, %σ, МПа

V, 
м/с

Теоретический результат Экспериментальное исследование

Полимерное покрытие Покрытие в канавке Покрытие Покрытие с канавкой

1 4,9 0,3 0,0115 0,0097 0,0139 0,0114

5–12 6–13

2 9,8 0,3 0,0060 0,0043 0,0074 0,0042

3 14,7 0,3 0,0040 0,0021 0,0053 0,0033

4 19,6 0,3 0,0055 0,0031 0,0077 0,0052

5 24,5 0,3 0,0095 0,0064 0,0107 0,0078
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ницу времени; C
р
 — теплоемкость при постоянном 

давлении; h() — толщина масляной пленки.
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STUDIES ON WEAR RESISTANCE 
OF THE RADIAL BEARING DESIGN
TAKING INTO ACCOUNT 
RHEOLOGICAL PROPERTIES 
OF MICROPOLAR LUBRICANT
The article is devoted to the development and analysis of a model of the motion 
of a micropolar lubricant in the working gap of a radial plain bearing with a 
fluoroplastic-containing antifriction composite polymer coating and with a groove 
on the supporting surface. New models are obtained on the basis of classical 
equations in the «thin layer» approximation and the continuity equation, which 
describes the turbulent mode of motion of a lubricant with micropolar rheological 
properties. The results of the numerical analysis of the obtained models of existing 
operational characteristics made it possible to obtain a quantitative assessment of 
the effectiveness of the support profile with a fluoroplastic-containing antifriction 
composite polymer coating with an axial groove. To complete the complex of 
studies and verify theoretical developments, experimental studies are carried out. 
The novelty of the work lies in the concretization of the technique of engineering 
calculations for the design of an effective radial bearing with an antifriction polymer 
coating with an axial groove on the bearing surface of the bearing bush, taking into 
account the dependence of the rheological properties of a micropolar lubricant on 
pressure and temperature in a turbulent mode, which makes it possible to estimate 
the value of the main operational characteristics: hydrodynamic pressure, load ability 
and coefficient of friction, as well as to expand the scope of practical application 
of models for engineering calculations. Thus, the design of a radial bearing with a 
polymer-coated support profile, a groove 3 mm wide, ensured a stable ascent of the 
shaft on a hydrodynamic wedge, which experimentally confirmed the correctness 
of the results of theoretical studies of a radial bearing with a diameter of 40 mm at 
a sliding speed of 0,32–3 m/s, load 4,9–24,5 MPa.

Keywords: radial bearing, wear resistance study, antifriction polymer composite 
coating, groove, verification, turbulent flow regime, dependence of viscosity on 
pressure and temperature.
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