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ЭКСПЕРИМЕНТАЛЬНОЕ 
ОПРЕДЕЛЕНИЕ 
НЕЛИНЕЙНОЙ ФУНКЦИИ 
ДЕМПФИРОВАНИЯ 
МЕХАНИЧЕСКИХ СИСТЕМ
Коэффициенты нелинейной функции демпфирования механической системы  
с одной поступательной степенью свободы определяются по эксперименталь-
но полученной осциллограмме свободных колебаний. Функция моделируется 
тремя видами трения: сухим, линейно-вязким и нелинейно-вязким. Определя-
ются численные значения коэффициентов демпфирования. Получена характе-
ристика диссипативной силы в функции перемещения, по которой находится 
количество рассеянной за период энергии. Методом энергетического балан-
са приближённо находится эквивалентный коэффициент относительного за-
тухания, с использованием которого выполняется численное интегрирование 
уравнения движения. Наложением расчётной осциллограммы на эксперимен-
тальную показывается удовлетворительное совпадение огибающей и фазы 
колебательного процесса. Уточнение параметров функции демпфирования 
может быть найдено аппроксимацией экспериментальных амплитуд. Найден-
ное значение коэффициента относительного затухания может быть использо-
вано для решения нелинейных задач динамики слабодемпфированных систем. 

Ключевые слова: нелинейная функция демпфирования, сухое трение, линей-
но-вязкое трение, нелинейно-вязкое трение, диссипация энергии, огибающая, 
коэффициент относительного затухания, метод энергетического баланса.

1.  Введение. Механизмы демпфирования игра-
ют важную роль во многих приложениях, включая 
мониторинг состояния конструкций [1], динамику 
робототехнических [2, 3], энергетических [4, 5], 
механических [6], биологических [7–10], микро-  
и наноэлектромеханических [11, 12] систем. Пра-
вильный выбор модели демпфирования и оценка 
параметров её нелинейной функции скорости яв-
ляются важной проблемой в области динамики ме-

ханических систем (МС). Основные трудности воз-
никают из-за большого разнообразия механизмов 
рассеивания энергии, их сложности и взаимодей-
ствия, а также приближённого характера моделей 
диссипации энергии [13]. Такой подход с ограни-
ченным интересом к фактическим источникам  
и механизмам демпфирования обосновывается тем 
фактом, что количество энергии, рассеиваемой  
в обычных МС, весьма незначительно. Поэтому 
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диссипативные силы, зависящие от этой энергии, 
являются малыми по сравнению с инерционными 
и восстанавливающими силами. Физически более 
обоснованные методами теории вязко- и термо-
упругости модели внутреннего трения являются  
и более сложными, и поэтому используются редко.

При расчёте частотных характеристик МС ос-
новной проблемой является определение характе-
ристик сил неупругого сопротивления. Непосред-
ственное измерение их сопряжено с большими 
трудностями, однако достаточно просто можно по-
лучать экспериментальные осциллограммы свобод-
ных затухающих колебаний МС. Уменьшение ам-
плитуд на них определяется конкретной, в общем 
случае, нелинейной функцией демпфирования. По-
этому, получив убывающую последовательность их, 
можно определить параметры этой функции. Из-
вестно, что демпфирование, возникающее при дви-
жении МС, обусловлено тремя видами трения: вну-
тренним, конструкционным и внешним, вызванным 
движением в вязких средах, жидкостях или газах. 

Для важного частного случая слабодемпфиро-
ванных МС с одной степенью свободы, линейных 
по восстанавливающей силе, нелинейную функцию 
демпфирования, зависящую только от обобщённой 
скорости, с помощью малого параметра  представ-
ляют в виде степенной функции   xxxf n
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либо в виде степенного ряда [14, c. 354; 15–16]

 
,                 (1) 

причём в практически важных случаях m  2. Это 
означает, что нелинейная функция демпфирования, 
формируемая всеми имеющимися в МС источни-
ками сил неупругого сопротивления, моделируется 
суммой сухого (n = 0), линейно-вязкого (n = 1) и 
квадратичного (n = 2) трения.

В работе [13] при экспериментальном и числен-
ном рассмотрении колебаний МС в виде плоского 
физического маятника в воздухе рассматриваются 
три составляющие силы неупругого сопротивления:

—  линейно-вязкая (пропорциональная угловой 
скорости); 

—  нелинейно-вязкая (квадратично зависящая  
от этой скорости);

—  пропорциональная ускорению.
Отмечается, что последняя компонента вводится 

для удовлетворительного приближения к реальному 
движению маятника в воздухе. Со ссылкой на [17] 
утверждается, что введение составляющей, про-
порциональной ускорению в выражении для силы 
сопротивления, не следует считать необычным.  
В случае колебательного движения элементарных 
тел (сферы, бесконечного цилиндра и т. д.) в вяз-
кой жидкости аналитические решения при малых 
числах Рейнольдса показывают, что сопротивле-
ние имеет две части: пропорциональную скорости 
(диссипативную) и пропорциональную ускорению 
(инерционную). В эксперименте начальный угол 

отклонения маятника был «большим»: 
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Коэффициенты демпфирования для четырёх длин 
маятника находились тремя методами: конечно-раз-
ностным, бисекции и градиентным. Вычислялись 
средние и среднеквадратичные ошибки результатов 
численного интегрирования уравнений движения 
по сравнению с экспериментальными осциллограм-
мами. Уравнения интегрировались последовательно 
с линейным трением, с суммой линейного и ква-

дратичного и с суммой линейного, квадратичного  
и трения, пропорционального ускорению. Отмече-
но, что во втором случае коэффициент демпфиро-
вания получился отрицательным, что физически не-
реализуемо, и поэтому авторы ограничились только 
квадратичным трением, утверждая, что в этом слу-
чае предсказание действительного движения луч-
ше, чем в случае только линейного трения.

Показано, что введение в демпфирующий ко-
эффициент члена, пропорционального ускорению,  
не является пренебрежимо малым и что вклад этого 
члена зависит от начального угла отклонения маят-
ника.

На заключительной стадии выполняется «общая 
оптимизация», под которой понимается, что рас-
стояние между численными и экспериментальными 
осциллограммами минимизируется одновременно 
для всех значений начальных отклонений и длин 
маятника. Приведены значения трёх коэффициен-
тов демпфирования для четырёх различных длин 
маятника.

Констатируется, что описание силы неупруго-
го сопротивления, зависящей как от скорости, так  
и от ускорения, оказывается наиболее подходящим. 
Утверждается, что трение в опоре маятника несу-
щественно по сравнению с сопротивлением возду-
ха. Способность шнура к скручиванию и неплоские 
колебания могут иметь большее значение. Все три 
коэффициента предполагались постоянными, не за-
висящими от числа Рейнольдса.

В статье [18] экспериментально и теоретически 
рассматриваются колебания линейного по восста-
навливающей силе физического маятника — шара. 
Указывается, что использование закона линейно-
вязкого трения Стокса 
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 в этом случае 
приводит к большим ошибкам и что необходимо 
учитывать квадратичное и внутреннее трение. 

В дополнение к формуле Стокса при гармони-
ческом движении сила вязкого трения включает  
в себя «глубину проникновения δ», которая зависит 
от угловой частоты колебаний ω и плотности жид-
кости ρ. Путем сравнения теории и эксперимента 
предложено уточнённое выражение для формулы 
Стокса при гармоническом движении, в которую 
входит «глубина проникновения». Показано, что  
в обычных случаях глубина δ меньше радиуса шара 
примерно на порядок. Другими словами, вязкое 
гармоническое трение может быть намного больше, 
чем вязкое трение стационарного потока. При этом 
показано, что диссипативная сила пропорциональна 
площади шара, а не её радиусу. Отмечено, что если 
в МС включены скользящие или катящиеся элемен-
ты, то должно использоваться нелинейное трение 
Кулона. Констатируется также, что квадратичное 
трение наиболее важно в начале затухающих ко-
лебаний, линейное в средней части и сухое в их 
конце. Приведена осциллограмма свободных зату-
хающих колебаний физического маятника в воде, 
на которую нанесена полученная численно огиба-
ющая. 

В уравнении движения с линейной восстанав-
ливающей силой учитываются четыре вида трения: 
сухое, гистерезисное, амплитудно-зависимое (жид-
костное) и линейно-вязкое, причём первые три за-
висят от знака скорости. Гистерезисное и ампли-
тудно-зависимое называются «модифицированным 
кулоновским» затуханием.

В статье [19] предлагается метод измерения сил 
и коэффициентов трения на основе регистрации 
затухающих амплитуд, не требующий измерения 
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самих амплитуд. Эксперименты проводятся на фи-
зическом маятнике с опорой качения. Утверждает-
ся, что при числе полных колебаний, превышаю-
щих 103, метод, предложенный в [14, 15], неудобен,  
а уменьшение числа измеряемых амплитуд, приво-
дит к увеличению погрешности в определении ко-
эффициентов демпфирования β

0
, β

1
, β

2
. Сила тре-

ния (диссипативная функция) аппроксимируется 
выражением 
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. Уравнение 
движения решается асимптотическим методом, при 
помощи которого находятся выражения для второй 
гармоники тройной частоты и поправка для частоты 
свободных колебаний, влиянием которых на реше-
ние в дальнейшем пренебрегают. При этом утверж-
дается, что полученное выражение для огибающей 
первой гармоники остаётся прежним. Из аппрок-
симации этим выражением экспериментальной оги-
бающей находятся коэффициенты демпфирования 
β

0
, β

1
, β

2
.

Арсенал исследователей по надежной оценке 
параметров демпфирования постоянно пополняется 
по мере открытия новых и более сложных методов 
анализа данных. К их числу относится анализ топо-
логических данных (пиков-впадин осциллограмм), 
двумерное изображение которых называется диа-
граммой инерционности и которое используется 
для оценки параметров степенного затухания из 
функции свободного отклика. В статье [20] при-
ведены результаты оценки коэффициентов сухого 
линейно-вязкого и квадратичного трения с миними-
зацией влияния аддитивного шума на эксперимен-
тальные осциллограммы свободных затухающих ко-
лебаний физического маятника. Утверждается, что 
по сравнению с большинством алгоритмов иденти-
фикации параметров затухания этот метод является 
вычислительно быстрым и требует только времен-
ного ряда в качестве входных данных. Показано, 
что он устойчив к широкому диапазону параметров 
затухания, к высоким уровням шума и низким ча-
стотам дискретизации. При оценке вязкого затуха-
ния метод позволяет достаточно точно определять 
коэффициент относительного затухания вплоть  
до критического  = 1, в то время как большинство 
методов ограничено значением 0,3. Метод может 
быть распространён на МС с конечным числом сте-
пеней свободы. 

2.  Экспериментальная часть. 
2.1.  Экспериментальный стенд. Установка пред-

ставляет собой тележку массой m = 4,5 кг, которая 
может перемещаться только в горизонтальном на-
правлении в пределах 0,2 м (рис. 1).

Жёсткость боковой пружины, найденная экс-
периментально по формуле 
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Демпфирующие элементы β
0
, β

1
, β

2
 условно пред-

ставляют непотенциальные силы, возникающие 
при колебаниях массы m за счёт внутреннего тре-
ния в материале пружин, конструкционного трения  
и сопротивления воздуха (рис. 2).

Характеристика суммарной диссипативной силы 
(нелинейной функции демпфирования), создавае-
мой этими факторами, записывается в виде 

 .              (2) 

Измерение обобщённой координаты (ОК) x про-
изводится датчиком потенциометрического типа  

с последующей записью её через мостовую схему 
и многофункциональную плату аналогового и циф-
рового ввода/вывода ЛА – 70М4 на жёсткий диск 
компьютера с последующей обработкой в пакете 
Maple.

Установка позволяет изучать и другие задачи 
линейной и нелинейной динамики. Например, по-
лучать экспериментальные данные по частотам  
и формам главных колебаний МС с двумя степеня-
ми свободы или амплитуды и частоты точек бифур-
кации в осцилляторе Дуффинга.

2.2.  Результаты эксперимента. В ходе экспе-
римента выполнялась запись дискретных отсчётов 
свободных колебаний МС до её полной остановки  
с шагом дискретизации ~ 0,02 с. 

По формулам 

x
k
 = a

k
+a

k+1
; y

k
 = a

k
–a

k+1
             (3) 

находилась сумма и разность соседних амплитуд a
k 

свободных затухающих колебаний (табл. 1). 
Отсчёты ОК и времени фиксировались до тех 

пор, пока аддитивный шум не становился по уров-
ню сопоставимым с полезным сигналом — затухаю-
щими колебаниями. На сбойных участках (если они 
возникали) отсчёты определялись приближённо. 
Далее дискретные значения ОК и времени (табл. 1)  

Рис. 1. Стенд для экспериментального определения
 нелинейной функции демпфирования

Рис. 2. Динамическая модель МС для определения 
нелинейной функции демпфирования по огибающей 

колебательного процесса aenv(t)
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перемасштабировались в пакете Maple, попар-
но конвертировались в список списков, который  
в виде осциллограммы выводился на печать (рис. 3).

Визуально нелинейность характеристики демп-
фирующей силы обнаруживается уже в том, что 
обе огибающих типичной осциллограммы не име-
ют вида экспоненты. На рис. 3 обозначено N = 
=26 амплитуд, по которым определялись коэф-
фициенты нелинейной функции демпфирования 
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. МС имеет симметричную линейную харак-
теристику восстанавливающей силы, поэтому пе-
риод колебаний есть постоянная величина. Число  

16
ec   c–1  — это значение частоты свободных 

колебаний МС с демпфированием, найденное по их 
периоду, а число 
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 м — это началь-
ное значение огибающей a

env
(t), равное начальному 

отклонению, т.к. во всех экспериментах начальная 
скорость устанавливалась нулевой 
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.
3.  Обработка результатов эксперимента. Урав-

нение движения МС на рис. 2 с функцией демп-
фирования (2) при учёте в ней только первых трёх 
слагаемых записывается в виде

 .          (4)

Его можно использовать и для нахождения не-
линейной функции демпфирования в МС типа 
Дуффинга (при дополнительной установке в стенд  
на рис. 1 вертикальной пружины) при условии пре-
небрежения в её эквивалентной жёсткости зависи-
мостью от амплитуды колебаний.

Из малости колебаний не всегда следует линей-
ность МС по восстанавливающей силе. Например, 
МС типа Дуффинга с начальной деформацией вер-
тикальной пружины, равной нулю, принципиаль-
но не может совершать линейных колебаний, т.к.  
в этом случае в степенной характеристике восста-
навливающей силы нет линейного члена и излагае-
мая ниже методика определения нелинейной функ-
ции демпфирования неприменима.

Коэффициенты неупругого сопротивления β
0
, β

1
, 

β
2
  в нелинейной функции демпфирования (2), вхо-

дящей в уравнение (4), связаны с соответствующи-
ми приведенными коэффициентами трения γ

0
, γ

1
, γ

2
, 

соотношениями [14, c. 357; 15, c. 155].

 			   (5)

Коэффициенты γ
0
, γ

1
, γ

2
, имеющие размерность 

[м], [б/p], [м–1], определяются из системы линей-
ных алгебраических уравнений [14, с. 357]

 ,		  ,(6)

где сумма x
k
 и разность y

k
 соседних амплитуд a

k 

определялись по (3) в табл. 1.
Для краткости система (6) переписывается  

в виде 

 .               (7) 
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, равный постоян-

ной величине, есть уменьшение амплитуд по пря-
молинейной огибающей за один период затухаю-
щих колебаний при условии, что МС демпфирована 

только сухим трением; коэффициент 
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, где  
δ — логарифмический декремент — при условии, 
что система демпфирована только линейно-вязким 
трением.

Решив систему линейных алгебраических урав-
нений (7), получим коэффициенты γ

0
, γ

1
, γ

2
, а по ним 

по соотношениям (5) коэффициенты демпфирования

Таблица 1

Амплитуды ak, их сумма xk и разность yk 
по огибающей осциллограммы aenv(t)

№ a
k 

x
k 

y
k 

1 0,0744 0,13233 0,00855

2 0,06189 0,11480 0,00898

3 0,05291 0,09897 0,00685

4 0,04606 0,8660 0,00552

5 0,04054 0,07890 0,00218

6 0,03836 0,07101 0,00571

7 0,03265 0,06160 0,00370

8 0,02895 0,05405 0,00385

9 0,02510 0,04849 0,00171

10 0,02339 0,04379 0,00299

11 0,02040 0,03866 0,00214

12 0,01826 0,03438 0,00214

13 0,01612 0,02995 0,00299

14 0,01383 0,02644 0,00122

15 0,01261 0,02274 0,00248

16 0,01013 0,01956 0,00070

17 0,00943 0,01828 0,00058

18 0,00885 0,01685 0,00085

19 0,00800 0,01471 0,00129

20 0,00671 0,01214 0,00128

21 0,00543 0,01043 0,00043

22 0,00500 0,00957 0,00043

23 0,00457 0,00758 0,00156

24 0,00301 0,00459 0,00143

25 0,00158 0,00273 0,00043

26 0,00115 0 0

Рис. 3. Экспериментальная осциллограмма 
свободных затухающих колебаний МС 

на рис. 1 и её модели на рис. 2
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4.  Валидация коэффициентов функции демп-
фирования

4.1.  Приведенная характеристика нелинейной 
функции демпфирования. Приведенная функция 
демпфирования 

y(x) = γ
0
 + γ

1
x + γ

2
x2                 (9) 

пересчитывается в нелинейную функцию демпфи-
рования (2) при помощи соотношений [14, c. 361] 

 .          (10) 

Зависимость разности экспериментальных ам-
плитуд от их суммы (9) аппроксимируется методом 
наименьших квадратов параболой

y(x)  0,21x2 + 0,039x + 0,00046.        (11) 

Если демпфирование в МС равно нулю, т. е. она 
консервативна, то разность соседних амплитуд ста-
новится равной нулю, а их сумма — 2x

0
. Кривая (9) 

вырождается в точку с координатами (2x
0
; 0). Други-

ми словами, огибающая a
env

(t) содержит в себе всю 
информацию о нелинейной функции демпфирова-
ния (2).

После пересчёта диссипативной силы и скоро-
сти в разность и сумму амплитуд или, наоборот,  
с использованием (10) графики функций демпфиро-
вания (2) и (11) должны совпадать (рис. 4).

Следует отметить почти линейный тип характе-
ристики диссипативной силы.

4.2.  Нелинейная функция демпфирования. При 
расчёте этой характеристики и её составляющих  
с использованием коэффициентов (8) принима-
лось, что к левому концу пружины с

2
 прикладыва-

ется гармоническое кинематическое возбуждение  
у(t) = a

y
cosωt с частотой, близкой к собственной  

ω  ω
c 

 16 c–1 так, чтобы амплитуда абсолют-
ных колебаний a

x
, равнялась начальному сме-

щению x
0
 = 0,09 м, принятому в эксперименте 

при свободных колебаниях. В этом случае ха-
рактеристики сухого, линейно-вязкого и ква-
дратичного трения описываются выражениями 






















































3

2

1

2

1

0

333231

232221

131211

b

b

b

aaa

aaa

aaa

 

ka
c

Δ



2

0
0

4
 

2
1


  

222

10

/см

H
468,1

;
м/с

H
73,1;H134,0




 

 

   xxx
m

xy

xxx

c

c





2102

4

,
2

5









 

        xxxfxxfxsignxf ddd  22,11,00, ,,   

       xfxfxfxf dddd  2,1,0,   

с

м
5,10  xx c  

   
22

1

n

n
nd

a

x
axf 














  

  2
2

0

1  


 nJaW
n

n
n  

    tdnJ n  


 ,sin
2/

0

1
 

3

2
:2 = ;

4
1; = ;1 0; = 210 


 JnJnJn  

 и суммар-
ная 
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 (рис. 5).
Максимальная скорость при построении графи-

ков находилась как 
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. Характеристи-

ка 4 совпадает с кривой по (2) на рис. 4.
4.3.  Эквивалентный коэффициент относитель-

ного затухания. Принимая, что в режиме вынуж-
денного движения колебания происходят по гар-
моническому закону, преобразуем (1) в формулу 
характеристики диссипативной силы в функции 
перемещения для сухого (n = 0), линейно-вязкого 
(n = 1) и квадратичного (n = 2) трения:

 .              (12)

Полагая, что частота колебаний основания дис-
сипативных элементов β

0
, β

1
, β

2
 при закреплённой 

массе m (рис. 1) равна частоте свободных коле-
баний ω = ω

с
 = 16 c–1, а амплитуда его колеба-

ний равна начальному смещению в эксперименте  
на свободные, т. е. что a = x

0
 = 0,09 м, построим 

приближённые характеристики (12) сухого (n = 0), 
линейно-вязкого (n = 1) и нелинейно-вязкого (n = 2)  
составляющих и их суммы (рис. 6). 

Характеристики на рис. 6 могут быть построе-
ны и в режиме вынужденного движения при неза-
креплённой массе m и возбуждении за пружину c

2  

с частотой, приближённо равной собственной ω  ω
c 

с тем, чтобы амплитуда колебаний была равна на-
чальному смещению a = x

0
 в свободном движении.

Количество энергии, рассеиваемой нелинейной 
силой демпфирования (2) в вынужденном движе-
нии, находится по формуле [21]

 ,                  (13) 
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Рис. 4. Нечётно-симметричные графики приведенной 
аппроксимирующей (11) и нелинейной функции

 демпфирования (2)
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Рис. 5. Расчётная характеристика нелинейной функции 
демпфирования в режиме вынужденного движения 

и её составляющие:
1 — сухого трения ( )xfd 0, ; 2 — линейно-вязкого ( )xfd 1, ;
3 — нелинейно-вязкого (турбулентного) трения ( )xfd 2, ;

 4 — суммарная характеристика  ( )xfd 
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Количество энергии, рассеиваемой сухим, ли-
нейно-вязким и квадратичным трением, и суммар-
ное найдётся как

 		  (14)

Подставив в (14) значения коэффициентов демп-
фирования (8), x

0
 = 0,09 м, ω = ω

с
  16 с–1, полу-

чим количество энергии W = 1,47 Дж, по которому 
найдём среднюю мощность процесса диссипации 

энергии 
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 Воспользовавшись 

принципом энергетического баланса, найдём вели-
чину эквивалентного коэффициента относительно-
го затухания

                                                   ,

которая может быть использована при решении 
других экспериментальных задач нелинейной дина-
мики на стенде (рис. 1).

Численное интегрирование ОДУ (4) с найденны-
ми экспериментально коэффициентами сухого β

0
, 

линейно-вязкого β
1
 и квадратичного β

2
 трения (8) 

показывает удовлетворительное совпадение экспе-
риментальной осциллограммы с расчётной (рис. 7).

Огибающие a
env

(t) построены при значении ко-
эффициента затухания 

 
5.  Обсуждение результатов
1.  Количество энергии, рассеиваемой за период 

свободных затухающих колебаний, будет несколь-
ко меньше, чем по (13), т. к. в крайних положени-
ях амплитуда будет меньше, чем в начале периода.  
В этих положениях кинетическая энергия МС равна 
нулю, а убыль полной энергии будет обеспечивать-
ся уменьшением только потенциальной энергии,  
т. е. уменьшением амплитуды колебаний (табл. 1).

2. Принцип энергетического баланса, положен-
ный в основу получения эквивалентного коэффици-
ента относительного затухания, не означает полного 
совпадения экспериментальной и расчётной огиба-
ющих. Удовлетворительное совпадение огибающих 
наблюдается на начальном и конечном участках 
примерно на трёх периодах. Можно утверждать, что 
имеет место совпадение огибающих в среднем.

3.  Несмотря на значительный разброс экспери-
ментальных точек приведенная аппроксимирующая 
и нелинейная функция демпфирования совпадают 
полностью. При демпфировании МС только одним 
линейно-вязким трением зависимость разности ам-
плитуд от их суммы описывается линейным выра-
жением

 

             

где c
1
, c

2
 некоторые постоянные; 
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. 
Это обстоятельство даёт возможность упрощеч-

ния динамических моделей МС. 

6.  Выводы
1. Удовлетворительное совпадение огибающей 

и фазы экспериментальной осциллограммы с рас-
чётной, полученной численным интегрированием 
уравнения движения, позволят рекомендовать по-
лученное значение эквивалентного коэффициента 
относительного затухания для расчёта динамики 
механически подобных МС.

2. Для уточнения коэффициентов нелинейной 
функции демпфирования целесообразно по экспе-
риментальным амплитудам получить аппроксими-
рующее выражение для огибающей и воспользо-
ваться описанной выше процедурой.

3. Метод энергетического баланса применим для 
слабодемпфированных МС. Для сильно- и пере-
демпфированных осцилляторов целесообразно вос-
пользоваться топологическим методом.

4. Суммарные графики функций демпфирова-
ния незначительно отличаются от прямых, поэтому 
нелинейную функцию демпфирования с удовлетво-
рительной точностью можно заменить эквивалент-
ной прямолинейной, что упростит практические 
расчёты. 

Библиографический список

1.  Cao M. S., Sha G. G., Gao Y. F. [et al.] Structural damage 

identification using damping: a compendium of uses and features //  

.;
3

8

;;4

210
23

022

2
011000

WWWWxW

xWxW c




 

Вт.4,7
с0,198

Дж47,1


T

W
N  

026,0
2 2

2
0





mcx

W

c

eq  

 

.2где

,с4,0
кг5,42

см63,3

2

2

1

mс

H

m
h

eqeq

eq
eq









 

 

     
    ,

11

11
12

12

2
2

2
1

2
2

2
1 x

ecec

ecec
xy

icic

icic










 

1i  

 

.;
3

8

;;4

210
23

022

2
011000

WWWWxW

xWxW c




 

Вт.4,7
с0,198

Дж47,1


T

W
N  

026,0
2 2

2
0





mcx

W

c

eq  

 

.2где

,с4,0
кг5,42

см63,3

2

2

1

mс

H

m
h

eqeq

eq
eq









 

 

     
    ,

11

11
12

12

2
2

2
1

2
2

2
1 x

ecec

ecec
xy

icic

icic










 

1i  

 

.;
3

8

;;4

210
23

022

2
011000

WWWWxW

xWxW c




 

Вт.4,7
с0,198

Дж47,1


T

W
N  

026,0
2 2

2
0





mcx

W

c

eq  

 

.2где

,с4,0
кг5,42

см63,3

2

2

1

mс

H

m
h

eqeq

eq
eq









 

 

     
    ,

11

11
12

12

2
2

2
1

2
2

2
1 x

ecec

ecec
xy

icic

icic










 

1i  

 

Рис. 6. Характеристики составляющих демпфирования  
в функции ОК x  (петли гистерезиса):

1 — сухого трения fd,0
(х); 2 — линейно-вязкого fd,1

(х);
3 — нелинейно-вязкого (турбулентного) трения fd,2

(х);
4 — суммарная характеристика fd(х) 

Рис. 7. Наложение экспериментальной 1 и расчётной 2 
осциллограмм; t

0
 = 0,887 c — время задержки снятия 

удерживающей массу   m  связи; 
x

0
 = 0,09 м — начальное отклонение массы m
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DETERMINING 
THE NONLINEAR DAMPING 
FUNCTION USING EXPERIMENTS
In this article, the coefficients of the nonlinear damping function of a mechanical system 
with one translational degree of freedom are determined from an experimentally 
obtained oscillogram of free vibrations. The function is modeled using three types 
of damping: coulomb damping, linear viscous, and nonlinear viscous damping. 
Numerical values of the damping coefficients are identified. The characteristic of 
the dissipative force as a function of displacement is obtained, and is used to 
find the amount of energy dissipated over a time period. An equivalent relative 
damping ratio is approximated using the energy balance method and then used 
to perform numerical integration of the equation of motion. A satisfactory match 
of the envelope curve and the phase of the vibrational process is demonstrated 
by comparing the calculated oscillogram to the experimental one. The damping 
function parameters can be further refined by approximating the experimental 
amplitudes. The obtained value of the relative damping coefficient can be used to 
solve nonlinear problems in the area of dynamics of weakly damped systems.

Keywords: nonlinear damping function, Coulomb damping, linear viscous damping, 
nonlinear viscous damping, energy dissipation, envelope curve, relative damping 
ratio, energy balance method.
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