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ПОРШНЕВОГО КОМПРЕССОРА
В работе проводится анализ напряженного состояния системы шток порш-
ня — поршень одноступенчатого длинноходового поршневого компрессора. 
Данные компрессоры применяются для изменения давления сжатого газа  
от нормального атмосферного давления (760 мм рт. ст. = 0,101 МПа) до дав-
ления нагнетания (2–10 МПа). Определены критерии расчета штока поршня  
с точки зрения его динамики с учетом частоты собственных колебаний штока 
поршня. Сделаны выводы и приведены практические рекомендации, которые 
можно использовать в процессе проектирования данных компрессорных сту-
пеней.
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потеря устойчивости сжатых стержней, резонанс, критическая сила сжатия 
Эйлера, политропный процесс, частота свободных колебаний штока, частота 
вынужденных колебаний штока.

Введение. В настоящее время в различных от-
раслях промышленности широко применяются га-
зовые компрессоры различных конструкций. Одной 
из таких схем является конструкция поршневого 
компрессора, предназначенного для получения сжа-
того воздуха или иного газа. Как правило, данный 
тип компрессора имеет несколько ступеней сжатия 
для получения воздуха высокого давления [1]. 

Для мобильных транспортных средств, напри-
мер судов, требуются более компактные компрес-
соры. Практика показала, что особенный интерес 
представляют поршневые длинноходовые ком-
прессоры. Данные конструкции интересны тем, 
что они имеют только одну ступень сжатия. При 
этом обеспечивается повышение давления от нор-
мального (760 мм рт. ст. = 0,101 МПа) до конечно-
го (2–10 МПа). Как показано в работе [2], к длин-
ноходовым относят одноступенчатые поршневые 
компрессоры с относительной длиной цилиндра  
ψ = L/D

c
 > 10. Для соблюдения теплового ре-

жима данные компрессоры делают тихоходны-
ми T > 2c. Пример такого компрессора приведен  
на рис. 1. Обозначения физических величин, при-
нятые в данной статье, приведены в табл. 1. Раз-
личным вопросам, связанным с проектированием  
и применением на практике длинноходовых тихо-
ходных поршневых компрессоров, посвящены ра-
боты [3–7]. 

Кроме вопросов, связанных с термодинамикой  
и теплопередачей при получении сжатых газов, не-
обходимо решать важные задачи по расчету кон-
струкции данных компрессоров на прочность, 

жесткость, колебания и т.д. Данные задачи рассма-
триваются в фундаментальных работах [8–11]. 

Рассматриваемый компрессор состоит из не-
скольких узлов и деталей. Обратим внимание  
на прочностной расчет поршня компрессора и его 
штока, изготовленных совместно как единая деталь. 
В работе [12] рассматривалась методика расчета 
данной детали с точки зрения статической прочно-
сти и устойчивости. Однако несомненный интерес 
представляют динамические расчеты с учетом ча-
стоты собственных колебаний штока поршня. 

Постановка задачи. Как было указано выше,  
в настоящее время длинноходовые поршневые 
компрессоры для мобильных средств изготовляют 
тихоходными для соблюдения теплового режима. 
Это означает, что данные компрессоры формируют 
малый расход газа высокого давления. При созда-
нии новых перспективных быстроходных моделей 
таких компрессоров и, соответственно, эффектив-
ном решении задач охлаждения узлов и деталей 
данных машин, возникает задача расчета динами-
ческой прочности их наиболее нагруженных узлов 
и, в частности, системы шток поршня — поршень. 
Решению данного вопроса посвящена данная пу-
бликация. 

На рис. 2 представлен испытательный стенд 
длинноходового тихоходного поршневого компрес-
сора [5]. Принципиальная схема рабочего цилиндра 
компрессора приведена на рис. 3 [12]. 

В начальный момент времени t = 0 поршень 
компрессора занимает положение 2, при этом шток 
поршня на всю свою длину выходит наружу через 
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отверстие в левой торцевой стенке цилиндра. В дан-
ный момент времени давление газа в камере ци-
линдра составляет P

min
 МПа. В следующий момент 

времени шток поршня и сам поршень начинают 
движение вправо, сжимая газ. В конце первой по-
ловины рабочего цикла поршень занимает положе-
ние 2a. В результате этого давление газа в камере 
увеличивается до P

max
 МПа и сжатый газ через от-

крытый клапан уходит в ресивер. Далее во вторую 
половину рабочего цикла поршень перемещается  
до крайнего левого положения, создавая разряже-
ние в камере цилиндра для его заполнения газом  
с давлением P

min
 МПа. 

На основе рис. 3 составим схему прочностного 
расчета штока поршня на прочность и устойчивость, 
рис. 4. В реальной конструкции корпус компрес-
сора неподвижен, а перемещается шток поршня 
вместе с поршнем. В расчетной схеме поступим 
наоборот. Шток поршня и поршень неподвижны, а 
перемещается корпус компрессора. Иными слова-
ми, в начальный момент времени t = 0 опора штока 
поршня совпадает с отверстием в правой торцевой 
стенке цилиндра — точка C совмещается с точкой 
В, расположенной в месте соединения поршня и его 
штока. Текущая координата по оси z равна z = a = l. 

В конце первой половины рабочего цикла подвиж-
ная опора — точка C совпадает с другим концом 
штока поршня — точкой А. Текущая координата  
по оси z будет равна z = a = 0. В конце второй 
половины рабочего периода текущая координата  
по оси z возвращается к положению z = a = l.

Рис. 1. Принципиальная модель тихоходной компрессорной 
ступени: 1 — цилиндр, 2 — поршень-шток, 

3 — поршневые уплотнения, 4 — всасывающий клапан, 
5 — нагнетательный клапан, 6, 7 — опоры, 

8 — монтажные шпильки, 9 — клапанная плита [2]

Таблица 1

Обозначения в формулах

Сим- 
волы

Описание
Размер-
ность

ψ Относительная длина поршневого 
цилиндра

м

S
p

Рабочий ход поршня м

D
c

Внутренний диаметр цилиндра ступени м

T Время рабочего цикла компрессора м

D
r

Диаметр штока поршня компрессора м

L
c

Длина цилиндра компрессора м

H
p

Длина поршня м

l Длина штока поршня м

a(t)
Текущая длина штока поршня внутри 
цилиндра ступени

м

P
max

Максимальное давление газа 
в рабочей камере компрессора

Па

P
min

Минимальное давление газа 
в рабочей камере компрессора

Па

F
p

Сила давления сжатого газа Н

k Показатель политропы

V(t)
Текущий объем рабочей камеры 
компрессора

м3

V
max

Максимальный объем рабочей камеры 
компрессора. Начало первой половины 
периода

м3

a
max

Максимальное перемещение поршня 
в цилиндре

м

a
min

Минимальное перемещение поршня 
в цилиндре

м

t Текущее время с

ω Угловая частота перемещения поршня 
в цилиндре

F
kr

Критическая сила, при которой шток 
поршня теряет свою устойчивость

Н

E Модуль Юнга материала штока поршня МПа

J
min

Минимальный момент инерции сечения 
штока поршня

м4

ν Коэффициент приведения длины для 
условий закрепления штока поршня

R
Коэффициент детерминации. 
Максимальное значение — 1

S
Площадь поперечного сечения штока 
поршня

м2

u
Продольное перемещение текущего 
сечения штока поршня при его 
колебаниях

м

m Масса поршня кг

ρ Плотность материала поршня 
и штока поршня

кг/м3

Рис. 2. Действующая модель длинноходового компрессора: 
1 — силовой гидроцилиндр, 2 — ступень поршневого

 компрессора, 3 — ресивер, 4 — циркуляционный насос 
системы охлаждения, 5 — бак охлаждающей жидкости, 
6 — система контроля положения поршня, 7 — система 

контроля параметров сжатого газа [5]
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Сжатый в рабочей ступени газ формирует силу 
F

p
, действующую на поршень и его шток. С про-

тивоположной стороны штока действует сила F 
формируемая приводом компрессора. Примем, что  
в каждый момент времени t данные силы равны  
F = F

p
. Иными словами, на основании первого за-

кона Ньютона прямоугольная система координат, 
применяемая на рис. 4, является инерциальной  
и поршень совместно со штоком находятся либо 
в состоянии покоя, либо совершают равномерное 
прямолинейное движение. В рассматриваемом слу-
чае поршень и его шток находятся в состоянии  
покоя. 

Выражение для описания рабочего политропно-
го процесса сжатия газа в тихоходной ступени при-
ведено ниже.

PVk = const.                      (1)

В работе [13] проведено исследование показате-
лей политропы для рабочих процессов воздушных 
поршневых тихоходных длинноходовых компрес-
сорных ступеней. Для условия P

max
 ≤ 5 МПа –  

–k ≈ 1,05, при P
max

 = 5–10 МПа – k ≈ 1,1. 
В ходе своей работы поршень компрессора со-

вершает возвратно-поступательные движения.  
В первую половину рабочего цикла движение порш-
ня создает разряжение в рабочей зоне компрессо-
ра, за счет чего газ заполняет ее. 

Во вторую половину периода рабочего цикла 
поршень сжимает газ, создавая его избыточное дав-
ление, рис. 4. Для данного этапа на основании вы-
ражения (1) запишем.

 
,                      (2)

                                    , b = l – a,         (3)

 .             (4)

Величина перемещения штока поршня и самого 
поршня b(t) определяется законом движения рабо-
чего органа силового привода компрессора. Примем 
допущение, что поршень совершает гармонические 
колебания (5).

.            (5)

Тогда изменение величины давления P(t) в рабо-
чей камере компрессора в первой половине пери- 
ода будет определять выражение (6).

 .    (6)

Величина силы сжатия в первой половине пе-
риода будет определяться следующим выражением:

 

.                           (7)

С учетом выражения ω = 2π/T изменим выра-
жение (7)

 .                          (8)

Выражение (8) по своей сути описывает «газо-
вую пружину», которая является аналогом обычной 
механической пружины, действующей в колеба-
тельной механической системе, где значения силы 
сжатия зависят от перемещений поршня компрес-
сора.

В реальной конструкции поршневого компрес-
сора на величину давления сжатого газа оказывают 
воздействия многие факторы. Например, величина 
настройки выпускных и впускных клапанов, темпе-
ратурный режим компрессора и т.д. Графические 
зависимости значений давления в рабочей каме-
ре компрессора от времени приведены в работах  
[5, 13]. 

В данной работе рассматривается задача опре-
деления критической силы, вызывающей потерю 
устойчивости штока поршня поршневых длиннохо-
довых компрессорных ступеней. Так как выраже-

Рис. 3. Принципиальная схема расчета штока поршня 
на прочность и устойчивость: 1 — цилиндр компрессора, 

2 — поршень (начальное положение поршня), 
2a — поршень (конечное положение поршня), 
3 — шток поршня, 4 — уплотнение поршня, 

5 — всасывающий клапан, 6 — нагнетательный клапан [12]

Рис. 4. Схема расчета штока поршня 
на прочность и устойчивость. Первая половина периода 

(прямой ход поршня)
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ние (8) дает завышенные значения силы, действу-
ющей на шток поршня, по сравнению с реальными 
величинами этой силы, то применим данное выра-
жение для расчета критической силы F

kr
. Иными 

словами, мы принимаем во внимание коэффициент 
запаса прочности.

Наиболее полным и универсальным методом ис-
следования устойчивости механической системы 
является динамический метод, который анализи-
рует свойства возмущенного движения элементов 
данной системы. Если при этом движении возму-
щенная система возвращается в равновесное состо-
яние, то она устойчива, и наоборот.

В нашем случае на процесс формирования дав-
ления сжатого газа воздействует значительное ко-
личество нелинейных и разнородных физических 
и конструкционных факторов. Поэтому исходные 
дифференциальные уравнения оказываются слиш-
ком сложными для решения. В связи с этим вос-
пользуемся статическим методом Эйлера, который 
отвечает на вопрос: при какой нагрузке возникают 
смежные формы равновесия штока поршня, отли-
чающиеся от прямолинейной формы?

Теория. В работе [14] опубликованы расчетные 
параметры для определения критической нагрузки 
центрально сжатых стержней по формуле Эйлера, 
выражение (9). 

 .                       (9)

Расчетная схема исследуемого штока поршня  
и условия его нагружения и закрепления приведе-
ны на рис. 4. В табл. 2 приведены значения коэффи-
циента приведения ν в зависимости от соотношения 
текущей длины штока a к его полной длине l. 

На основании расчетных схем, приведенных  
на рис. 3 и 4, запишем выражение (10).

 .     (10)

Преобразуем дискретные данные, приведенные 
в табл. 2 в интерполяционную функцию зависимо-
сти значения коэффициента приведения ν от соот-
ношения текущей длины штока a к его полной дли-
не l, выражение (11), [15].
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, R = 0,974.    (11)

Подставим выражения (10) и (11) в уравнение 
(9).

 2
min

2

l

EJ
Fkr



π

 

  




















 






  1

2
2sin1

2

1
1 min ππ

T

t

l

a
lta  

547,107,1
)(

sin184,1 





 
l

ta
 

2

min

min
2

547,107,11
2

2sin1
2

1
1sin184,1 











































 





 







 




l
Т

t

l

a

EJ
Fkr  

 
2

2

02

2

t

u
mtFdz

z

u
ES p









 

 
2

2

0
2

2

0 t

u

m

tF
dz

z

u

m

ES p









 

2

2

2

2
2

t

u

z

u
c








,   



E

c2  

  
 

  
 tTt

tT

zZz

zZ
c

11
2

2

2

2
2









 

  
 

2

2

2
2 1

p
zZz

zZ
c 




,   

  
 

2

2

2 1
p

tTt

tT





 

     02

2

2





tTp

t

tT
 

     0
2

2

2

2





zZ

c

p

z

zZ
 

  












 z

c

p
Dz

c

p
СzZ cossin  

   
z

zZ
ESzZpm




2

0  











































z
c

p

c

p
Dz

c

p

c

p
СES

z
c

p
Dz

c

p
Сpm

sincos

cossin2
0

 

Таблица 2

Значения коэффициента приведения ν в зависимости от соотношения текущей длины штока a к его полной длине l

a(t)/l 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

ν 0,499 0,463 0,426 0,392 0,362 0,35 0,362 0,391 0,426 0,463 0,499
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.                          (12)

Далее необходимо провести сравнение выраже-
ний (8) и (12) для недопущения формирования кри-
тической нагрузки, действующей на шток поршня. 
Ниже будет приведен пример данного расчета. 

Кроме расчетов штока поршневого компрессо-
ра на устойчивость также необходимо проверить 
исследуемую колебательную систему на резонанс.  
За расчетную схему колебательной системы выбе-
рем рис. 3 и 4. Примем, что поршень 2 (2а) совер-
шает колебательное движение. Справа на поршень 
действует сила F

p
(t), изменяющаяся во времени  

по закону, определяемому выражением (8). Слева 
с поршнем взаимодействует сила упругости штока 
поршня 3. Примем допущение, что поперечные се-
чения штока поршня остаются плоскими, при этом 
частицы стержня перемещаются только в продоль-
ном направлении вдоль оси z. 

Примем, что u является продольным перемеще-
нием текущего сечения штока при его колебаниях 
и u является функцией двух переменных — коор-
динаты z и текущего времени t, u = u(z,t). Переме-
щение бесконечно близкого поперечного сечения 
штока будет равно u + (∂u/∂z)dz, а относительное 
удлинение — ε = ∂u/∂z. 

Для составления дифференциального уравне-
ния движения поршня воспользуемся рис. 4. Тогда  

с учетом направления оси z на рис. 4 можно за-
писать следующее дифференциальное уравнение 
движения поршня 3: 

 .              (13)

Произведение ES является жесткостью стержня 
при его растяжении или сжатии. Преобразуем вы-
ражение (13): 

 .               (14)

Решение выражения (14) следует искать в виде 
суммы решений уравнения свободных колеба-
ний штока поршня с учетом массы поршня, рас-
положенной на правом конце штока — F

p
(t) = 0,  

и частного решения вынужденных колебаний што-
ка с учетом силы F

p
(t).

Уравнение свободных продольных колебаний 
прямолинейного стержня описывается следующим 
выражением [11]:

   .                (15)
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На основании метода Фурье решение выраже-
ния (15) можно найти в виде функции перемещения 
u, которое представляет произведения двух функ-
ций. Первая функция зависит только от аргумента 
z (перемещение), вторая — только от аргумента t 
(время).

u = Z(z)T(t).                    (16)

Подставим выражение (16) в (15) и преобразуем:

 .           (17)

Введем следующие обозначения:

 ,   (18)

Тогда следуют два выражения: 

 .                (19)

 .                (20)

Как известно, решением уравнения (19) будет 
следующее выражение:

T(t) = Asin(pt + α).                 (21)

Из выражения (21) видно, что неизвестная ве-
личина p является частотой свободных колебаний 
системы поршень–шток поршня. 

Решением уравнения (20) будет:

 .          (22)

Выражение (22) определяет собственную форму 
свободных колебаний системы шток поршня–пор-
шень. Количество собственных частот p

i
 неограни-

ченно. На практике наиболее вероятной является 
первая собственная частота p

1
. Для определения ча-

стот собственных колебаний и величин постоянных 
интегрирования рассмотрим граничные условия, 
рис. 4. Закрепленный конец стержня в точке A. При   
перемещение u равно нулю, Z(0) = 0.

Перемещение стержня в точке B. На правом 
конце стержня закреплен поршень с сосредоточен-
ной массой m

0
. При z = l следует следующее урав- 

нение.

 .                 (23)

Подставим выражение (22) в (23). 

 .        (24)

При условии  z=0 получим величину постоян-
ной интегрирования D = 0. С учетом полученного 
результата и z = l преобразуем выражение (24): 

 ,        (25)

 .                    (26)

Формы собственных колебаний для рассма-
триваемой схемы закрепления стержня с грузом  
на правом конце (система поршень–шток поршня) 
определяется следующим выражением: 

 .                      (27)

В нашем случае будет выражение (28):

 .                       (28)

Вычисление частоты свободных колебаний си-
стемы поршень–шток поршня p проведем ниже. 

Расчет вынужденных колебаний системы шток 
поршня–поршень проведем по следующему урав-
нению: 

 .                 (29)

С учетом выражения (7) и sin(ωt – π/2) =  
=–cos(ωt) получим следующее выражение:

 2
min

2

l

EJ
Fkr



π

 

  




















 






  1

2
2sin1

2

1
1 min ππ

T

t

l

a
lta  

547,107,1
)(

sin184,1 





 
l

ta
 

2

min

min
2

547,107,11
2

2sin1
2

1
1sin184,1 











































 





 







 




l
Т

t

l

a

EJ
Fkr  

 
2

2

02

2

t

u
mtFdz

z

u
ES p









 

 
2

2

0
2

2

0 t

u

m

tF
dz

z

u

m

ES p









 

2

2

2

2
2

t

u

z

u
c








,   



E

c2  

  
 

  
 tTt

tT

zZz

zZ
c

11
2

2

2

2
2









 

  
 

2

2

2
2 1

p
zZz

zZ
c 




,   

  
 

2

2

2 1
p

tTt

tT





 

     02

2

2





tTp

t

tT
 

     0
2

2

2

2





zZ

c

p

z

zZ
 

  












 z

c

p
Dz

c

p
СzZ cossin  

   
z

zZ
ESzZpm




2

0  











































z
c

p

c

p
Dz

c

p

c

p
СES

z
c

p
Dz

c

p
Сpm

sincos

cossin2
0

 

 2
min

2

l

EJ
Fkr



π

 

  




















 






  1

2
2sin1

2

1
1 min ππ

T

t

l

a
lta  

547,107,1
)(

sin184,1 





 
l

ta
 

2

min

min
2

547,107,11
2

2sin1
2

1
1sin184,1 











































 





 







 




l
Т

t

l

a

EJ
Fkr  

 
2

2

02

2

t

u
mtFdz

z

u
ES p









 

 
2

2

0
2

2

0 t

u

m

tF
dz

z

u

m

ES p









 

2

2

2

2
2

t

u

z

u
c








,   



E

c2  

  
 

  
 tTt

tT

zZz

zZ
c

11
2

2

2

2
2









 

  
 

2

2

2
2 1

p
zZz

zZ
c 




,   

  
 

2

2

2 1
p

tTt

tT





 

     02

2

2





tTp

t

tT
 

     0
2

2

2

2





zZ

c

p

z

zZ
 

  












 z

c

p
Dz

c

p
СzZ cossin  

   
z

zZ
ESzZpm




2

0  











































z
c

p

c

p
Dz

c

p

c

p
СES

z
c

p
Dz

c

p
Сpm

sincos

cossin2
0

 

 2
min

2

l

EJ
Fkr



π

 

  




















 






  1

2
2sin1

2

1
1 min ππ

T

t

l

a
lta  

547,107,1
)(

sin184,1 





 
l

ta
 

2

min

min
2

547,107,11
2

2sin1
2

1
1sin184,1 











































 





 







 




l
Т

t

l

a

EJ
Fkr  

 
2

2

02

2

t

u
mtFdz

z

u
ES p









 

 
2

2

0
2

2

0 t

u

m

tF
dz

z

u

m

ES p









 

2

2

2

2
2

t

u

z

u
c








,   



E

c2  

  
 

  
 tTt

tT

zZz

zZ
c

11
2

2

2

2
2









 

  
 

2

2

2
2 1

p
zZz

zZ
c 




,   

  
 

2

2

2 1
p

tTt

tT





 

     02

2

2





tTp

t

tT
 

     0
2

2

2

2





zZ

c

p

z

zZ
 

  












 z

c

p
Dz

c

p
СzZ cossin  

   
z

zZ
ESzZpm




2

0  











































z
c

p

c

p
Dz

c

p

c

p
СES

z
c

p
Dz

c

p
Сpm

sincos

cossin2
0

 

 2
min

2

l

EJ
Fkr



π

 

  




















 






  1

2
2sin1

2

1
1 min ππ

T

t

l

a
lta  

547,107,1
)(

sin184,1 





 
l

ta
 

2

min

min
2

547,107,11
2

2sin1
2

1
1sin184,1 











































 





 







 




l
Т

t

l

a

EJ
Fkr  

 
2

2

02

2

t

u
mtFdz

z

u
ES p









 

 
2

2

0
2

2

0 t

u

m

tF
dz

z

u

m

ES p









 

2

2

2

2
2

t

u

z

u
c








,   



E

c2  

  
 

  
 tTt

tT

zZz

zZ
c

11
2

2

2

2
2









 

  
 

2

2

2
2 1

p
zZz

zZ
c 




,   

  
 

2

2

2 1
p

tTt

tT





 

     02

2

2





tTp

t

tT
 

     0
2

2

2

2





zZ

c

p

z

zZ
 

  












 z

c

p
Dz

c

p
СzZ cossin  

   
z

zZ
ESzZpm




2

0  











































z
c

p

c

p
Dz

c

p

c

p
СES

z
c

p
Dz

c

p
Сpm

sincos

cossin2
0

 

 2
min

2

l

EJ
Fkr



π

 

  




















 






  1

2
2sin1

2

1
1 min ππ

T

t

l

a
lta  

547,107,1
)(

sin184,1 





 
l

ta
 

2

min

min
2

547,107,11
2

2sin1
2

1
1sin184,1 











































 





 







 




l
Т

t

l

a

EJ
Fkr  

 
2

2

02

2

t

u
mtFdz

z

u
ES p









 

 
2

2

0
2

2

0 t

u

m

tF
dz

z

u

m

ES p









 

2

2

2

2
2

t

u

z

u
c








,   



E

c2  

  
 

  
 tTt

tT

zZz

zZ
c

11
2

2

2

2
2









 

  
 

2

2

2
2 1

p
zZz

zZ
c 




,   

  
 

2

2

2 1
p

tTt

tT





 

     02

2

2





tTp

t

tT
 

     0
2

2

2

2





zZ

c

p

z

zZ
 

  












 z

c

p
Dz

c

p
СzZ cossin  

   
z

zZ
ESzZpm




2

0  











































z
c

p

c

p
Dz

c

p

c

p
СES

z
c

p
Dz

c

p
Сpm

sincos

cossin2
0

 

 2
min

2

l

EJ
Fkr



π

 

  




















 






  1

2
2sin1

2

1
1 min ππ

T

t

l

a
lta  

547,107,1
)(

sin184,1 





 
l

ta
 

2

min

min
2

547,107,11
2

2sin1
2

1
1sin184,1 











































 





 







 




l
Т

t

l

a

EJ
Fkr  

 
2

2

02

2

t

u
mtFdz

z

u
ES p









 

 
2

2

0
2

2

0 t

u

m

tF
dz

z

u

m

ES p









 

2

2

2

2
2

t

u

z

u
c








,   



E

c2  

  
 

  
 tTt

tT

zZz

zZ
c

11
2

2

2

2
2









 

  
 

2

2

2
2 1

p
zZz

zZ
c 




,   

  
 

2

2

2 1
p

tTt

tT





 

     02

2

2





tTp

t

tT
 

     0
2

2

2

2





zZ

c

p

z

zZ
 

  












 z

c

p
Dz

c

p
СzZ cossin  

   
z

zZ
ESzZpm




2

0  











































z
c

p

c

p
Dz

c

p

c

p
СES

z
c

p
Dz

c

p
Сpm

sincos

cossin2
0

 

 2
min

2

l

EJ
Fkr



π

 

  




















 






  1

2
2sin1

2

1
1 min ππ

T

t

l

a
lta  

547,107,1
)(

sin184,1 





 
l

ta
 

2

min

min
2

547,107,11
2

2sin1
2

1
1sin184,1 











































 





 







 




l
Т

t

l

a

EJ
Fkr  

 
2

2

02

2

t

u
mtFdz

z

u
ES p









 

 
2

2

0
2

2

0 t

u

m

tF
dz

z

u

m

ES p









 

2

2

2

2
2

t

u

z

u
c








,   



E

c2  

  
 

  
 tTt

tT

zZz

zZ
c

11
2

2

2

2
2









 

  
 

2

2

2
2 1

p
zZz

zZ
c 




,   

  
 

2

2

2 1
p

tTt

tT





 

     02

2

2





tTp

t

tT
 

     0
2

2

2

2





zZ

c

p

z

zZ
 

  












 z

c

p
Dz

c

p
СzZ cossin  

   
z

zZ
ESzZpm




2

0  











































z
c

p

c

p
Dz

c

p

c

p
СES

z
c

p
Dz

c

p
Сpm

sincos

cossin2
0

 



























c

pl

c

p
СES

c

pl
Сpm cossin2

0
 

0

tg
m

Sl

c

pl

c

pl 







  









l

z

c

lp
u i
i sin  







 z
c

p
u 1
1 sin  

    
 

0

2

2

2

m

tF
tTp

t

tT p



 

    

  

k

pc

pcc

t
la

HL

laHL

m

DP

tTp
t

tT
































ω

π

cos1
2

4 min

max

0

2
min

2

2

2

 

   

  

k

pc

pc

p

t
la

HL

laHL

Hp

P
tT
































ω

ρω

cos1
2

min

max

22

min

 

l

lΔ
  

 



























c

pl

c

p
СES

c

pl
Сpm cossin2

0
 

0

tg
m

Sl

c

pl

c

pl 







  









l

z

c

lp
u i
i sin  







 z
c

p
u 1
1 sin  

    
 

0

2

2

2

m

tF
tTp

t

tT p



 

    

  

k

pc

pcc

t
la

HL

laHL

m

DP

tTp
t

tT
































ω

π

cos1
2

4 min

max

0

2
min

2

2

2

 

   

  

k

pc

pc

p

t
la

HL

laHL

Hp

P
tT
































ω

ρω

cos1
2

min

max

22

min

 

l

lΔ
  

 



























c

pl

c

p
СES

c

pl
Сpm cossin2

0
 

0

tg
m

Sl

c

pl

c

pl 







  









l

z

c

lp
u i
i sin  







 z
c

p
u 1
1 sin  

    
 

0

2

2

2

m

tF
tTp

t

tT p



 

    

  

k

pc

pcc

t
la

HL

laHL

m

DP

tTp
t

tT
































ω

π

cos1
2

4 min

max

0

2
min

2

2

2

 

   

  

k

pc

pc

p

t
la

HL

laHL

Hp

P
tT
































ω

ρω

cos1
2

min

max

22

min

 

l

lΔ
  

 



























c

pl

c

p
СES

c

pl
Сpm cossin2

0
 

0

tg
m

Sl

c

pl

c

pl 







  









l

z

c

lp
u i
i sin  







 z
c

p
u 1
1 sin  

    
 

0

2

2

2

m

tF
tTp

t

tT p



 

    

  

k

pc

pcc

t
la

HL

laHL

m

DP

tTp
t

tT
































ω

π

cos1
2

4 min

max

0

2
min

2

2

2

 

   

  

k

pc

pc

p

t
la

HL

laHL

Hp

P
tT
































ω

ρω

cos1
2

min

max

22

min

 

l

lΔ
  

 



























c

pl

c

p
СES

c

pl
Сpm cossin2

0
 

0

tg
m

Sl

c

pl

c

pl 







  









l

z

c

lp
u i
i sin  







 z
c

p
u 1
1 sin  

    
 

0

2

2

2

m

tF
tTp

t

tT p



 

    

  

k

pc

pcc

t
la

HL

laHL

m

DP

tTp
t

tT
































ω

π

cos1
2

4 min

max

0

2
min

2

2

2

 

   

  

k

pc

pc

p

t
la

HL

laHL

Hp

P
tT
































ω

ρω

cos1
2

min

max

22

min

 

l

lΔ
  

 

Таблица 3

Физические характеристики расчетных величин для проведения расчетов системы 
шток поршня–поршень на устойчивость и резонанс

Параметр Величина параметра Параметр Величина параметра

P
min

0,1 МПа D
c

50 мм

H
p

75 мм l 895 мм

a
min

5 мм a
max

890 мм

L
c

1000 мм k 1,1

E 2∙105 МПа D
r

25 мм

J
min

м4 Δ 1,39 мм

d
r

22,22 мм σ 200 МПа

ρ 7850 кг/м3 P
klapan

3,0 МПа
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.     (30)

Решением данного дифференциального уравне-
ния примем функцию T(t) = Bcos(ωt). Решением 
уравнения (30) является следующее выражение:

 .            (31)

Рис. 5а. График теоретически возможной зависимости силы, 
действующей на шток поршня, от времени при расчете  
штока поршня на потерю устойчивости. Fp(j) — сила, 

действующая на поршень, со стороны сжатого газа согласно 
выражению (8). Вычисляется на основе политропного 

процесса сжатия газа в рабочей зоне компрессора

Рис. 5б. Графики зависимости сил, действующих на шток 
поршня, от времени при расчете штока поршня 

на потерю устойчивости. Fkr(j) — критическая сила Эйлера 
(при условии, что поперечное сечение штока поршня — 

сплошной круг); Fkr1(j) — критическая сила Эйлера 
(при условии, что поперечное сечение штока поршня — 

труба); Fklap(j) — сила действующая на поршень, 
со стороны сжатого газа (при давлении открытия 

нагнетательного клапана); Fσ2
(j) — предельная сила сжатия 

при расчете штока поршня на прочность (при условии, 
что поперечное сечение штока — труба)
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Рис. 6. Графики зависимости сил, действующих на шток 
поршня, от времени при расчете штока поршня, 

на потерю устойчивости при открытии нагнетательного 
клапана. Шток поршня — сплошной стержень. Давление 
настройки открытия нагнетательного клапана — 3 МПа. 

Fp(j) — сила действующая на поршень, со стороны сжатого 
газа; Fkr(j) — критическая сила Эйлера (при условии, 

что поперечное сечение штока поршня — сплошной круг); 
Fklap(j) — сила, действующая на поршень, 
со стороны сжатого газа (при давлении 

открытия нагнетательного клапана)

Рис. 7. Графики зависимости сил, действующих на шток 
поршня от времени при расчете штока поршня на потерю 

устойчивости при открытии нагнетательного клапана. Шток 
поршня — труба. Давление настройки открытия 
нагнетательного клапана — 1,6 МПа. Fp(j) — сила 

действующая на поршень, со стороны сжатого газа; 
Fkr1(j) — критическая сила Эйлера (при условии, что 

поперечное сечение штока поршня — труба); Fklap(j) — сила 
действующая на поршень, со стороны сжатого газа 
(при давлении открытия нагнетательного клапана)
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Результаты теоретических и практических ис-
следований. Проведем расчеты исследуемой кон-
струкции штока длинноходового поршневого ком-
прессора с помощью вышеприведенных уравнений. 
Численные значения использованных физических 
величин приведены в табл. 3. На рис. 5а и 5б при-
ведены графики теоретической зависимости сил, 
действующих на шток поршня, от времени при 
расчете штока поршня на устойчивость. Моменты 
инерции и предельные силы сжатия штока поршня 
определялись по известным формулам сопротивле-
ния материалов. На рис. 5а приведен теоретический 
график зависимости силы F

p
(t) от времени, получен-

ный на основе выражения (1) и (8). Он необходим 
для определения максимальной возможной силы, 
действующей со стороны сжатого газа на поршень, 
которая в конечном счете может вызвать потерю 
устойчивости штока поршня. Максимальную вели-
чину данной силы F

p
(t) необходимо использовать 

для расчетов на прочность и устойчивость. На прак-
тике максимум данной силы будет определяться 
величиной настройки нагнетательного клапана ком-
прессорной ступени, рис. 6 и 7. 

Для расчета собственных колебаний штока 
поршня применим выражение (26). Решая дан-
ное выражение численно, получим следующий 
результат: первая (самая низкая) угловая частота 
колебаний штока поршня; т.е. число колебаний, 
совершаемое в течение 2π секунд, составит p =  
=4048 рад/с. Секундная частота (число колебаний 
в секунду) составит f

p
 = 644 Гц. Период свободных 

колебаний будет равен T = 0,0016 c. 
Для вынужденных колебаний штока поршня 

аналогичные величины примут следующие значе-
ния: период вынужденных колебаний — T = 4 с; 
секундная частота — fω = 0,25 Гц; угловая часто- 
та — ω = 1,571 рад/с. 

Таким образом, рабочие режимы поршнево-
го длинноходового компрессора не могут вызвать 
резонанс штока поршня при его существующих 
размерах. На рис. 8 приведен график зависимости 
изменения относительной длины штока поршня  
от времени в течение периода T. Максимальное из-

менение длины штока поршня Δl, т.е. его укороче-
ние будет происходить в середине периода, и его 
величина составит 0,378 мм. Для целей проекти-
рования длинноходового поршневого компрессора 
данное изменение длины штока целесообразно вы-
разить в виде отношения изменения длины штока  

к его первоначальной длине — 
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, рис. 8. 

На рис. 6 и 7 приведены графики зависимости 
сил, действующих на шток поршня, при расчете 
штока на потерю устойчивости для различных ва-
риантов изготовления штока. 

Выводы и заключение
1.  Для исследуемой конструкции длинноходово-

го поршневого компрессора необходимо в первую 
очередь проводить проверочные прочностные рас-
четы на потерю устойчивости для штока поршнево-
го компрессора. 

2.  Частота свободных колебаний системы шток 
поршня–поршень значительно превышает частоту 
вынужденных колебаний при имеющихся параме-
трах работы исследуемого компрессора. Таким об-
разом, можно сделать вывод: резонанс штока порш-
ня для длинноходового поршневого компрессора  
не наблюдается. 

3.  При проведении проектировочного расчета 
штока поршня необходимо в качестве нагрузки, 
действующей на поршень компрессора со стороны 
сжатого газа, использовать максимальную величину 
силы F

p
(t), рассчитанную по формуле (8) — рис. 5а. 

Данное выражение показывает теоретически воз-
можную величину данной силы, вычисленную на 
основе политропного процесса сжатия газа в рабо-
чей зоне компрессора. Это позволит увеличить за-
пас прочности для штока поршня, так как рабочие 
значения силы F

p
(t) на практике будут меньше, рис. 

6 и 7. 
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Рис. 8. График зависимости относительного укорочения 
штока поршня от времени в течение периода T.
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OF STRESS STATE OF THE PISTON ROD 
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The analysis of loaded state of system piston rod – piston of single-stage long-
stroke piston compressor is performed. These compressors are used to change 
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