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РЕГИСТРАЦИЯ И ОБРАБОТКА 
СИГНАЛОВ В ИЗМЕРИТЕЛЬНОМ 
КОМПЛЕКСЕ КОНТРОЛЯ ПРОТЕЧЕК
ТРУБОПРОВОДНОЙ АРМАТУРЫ 
АТОМНОЙ ЭЛЕКТРОСТАНЦИИ
Статья посвящена проблеме идентификации негерметичности трубопровод-
ной арматуры. Описывается измерительный комплекс контроля протечек.  
В отличие от принятого в практике органолептического подхода предлагается 
автоматическая обработка сигнала с последующим выводом о герметичности 
арматуры. В основу автоматической обработки положен алгоритм на основе 
анализа сингулярного спектра, обеспечивающего повышение чувствительно-
сти. Эффективность комплекса подтверждается результатами испытаний из-
мерительного комплекса с использованием гидравлического стенда.

Ключевые слова: протечка арматуры, акустический сигнал, диапазон рабочих 
частот, анализ сингулярного спектра, проверка статистических гипотез, ошиб-
ки первого и второго рода.

Введение. Протечки арматуры представля-
ют угрозу безопасности атомных станций. Одной  
из важнейших задач технической диагностики обо-
рудования атомных электростанций (АЭС) являет-
ся контроль протечек [1–3]. В настоящее время 
широкое распространение получили тепловизион-
ный и ультразвуковой способ контроля внутренних  
и внешних протечек. Существуют также методы 
контроля герметичности с применением индикатор-
ного газа, например, предлагаемые Pfeiffer Vacuum 
подразумевают создание давления в испытательном 
образце с помощью газовой смеси (содержащей 
гелий) и поэтому имеют существенные ограниче-

ния для применения на работающем оборудовании. 
Проблемой использования тепловизионного под-
хода [4] является недоступность приборов с доста-
точной температурной чувствительностью и слож-
ность подстройки уровня и диапазона. Внедрение 
устройств и приборов, реализующих ультразву-
ковой подход, перспективно за счет доступности  
и универсальности метода [5, 6].

В практике контроля протечек оборудования 
АЭС положительно зарекомендовали себя прибо-
ры типа Ultraprobe (США), SDT (Бельгия), Uniscope 
(Россия). Эксплуатируемые на АЭС течеискатели 
имеют ряд ограничений. Например, для настройки 
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Ultraprobe необходимо различить на слух наличие 
частотных составляющих в выбранной полосе ча-
стот [7]. Процесс настройки требует многократных 
измерений для поиска значимых частотных компо-
нент. Встроенный в Ultraprobe спектральный ана-
лизатор выводит спектр подаваемого на наушники 
звукового сигнала и ограничен диапазоном до 5 кГц.

Кроме того, на рынке имеются ультразвуковые 
течеискатели LD 500/510, обеспечивающие обна-
ружение и расчет утечек, а также их фотофикса-
цию. Но подобные приборы существенно уступают 
вышеуказанным в чувствительности из-за слабой 
фильтрации посторонних шумов.

Постановка задачи. Имеющиеся подходы к по-
иску негерметичности и применяющиеся для этой 
цели приборы имеют ограничения, которые в ряде 
случаев приводят к неопределенности при локали-
зации течи. Поэтому задачей исследования является 
обоснование аппаратной реализации регистрирую-
щего прибора и объективных критериев диагности-
рования, обеспечивающих чувствительность при 
локализации течи.

Аппаратная реализация. В рамках договора 
между НИЯУ МИФИ и Концерном «Росэнерго- 
атом» нами был разработан измерительный ком-
плекс контроля протечек (ИККП) [8]. ИККП, как 
показано на рис. 1, представляет собой переносной 
программно-технический комплекс, включающий 
технические средства:

—  базовый модуль;
—  датчик акустический контактный;
—  высокочастотный микрофон свободного 

поля;
—  планшетный ПК; 
—  специализированное программное обеспече-

ние, позволяющее выполнить: регистрацию и хра-
нение акустических сигналов; обработку и анализ 
полученных акустических сигналов; формирование 
выводов по итогам измерения в заданном формате. 

Стоимость ИККП в два-три раза ниже зару-
бежных аналогов (Ultraprobe, SDT). Используемый  
в ИККП акустический датчик GT400 (рис. 2а) имеет 
температурный диапазон до +150 °С, а теплопере-
дача происходит через острие щупа, что приводит 
к медленному нагреву преобразователя и боль-
шему времени работы при высоких температурах  
объекта контроля. С точки зрения ширины диа-
пазона рабочих температур ИККП лучше приспо-
соблен для работы в условиях АЭС, чем Uniscope, 
включающий датчики GT200 и GT205 (рис. 2б).

Обзор известных методов обработки акустиче-
ских сигналов при идентификации протечек 

1)  органолептическое восприятие оператором 
акустического шума, создаваемого турбулентным 
потоком жидкости или газа через несплошности. 
Подход в настоящее время всё ещё используется, 
но не всегда надежен из-за особенностей восприя-
тия диагностом;

2)  автоматическое сопоставление уровня аку-
стического шума на герметичном оборудовании  
с зарегистрированным сигналом на том же обо-
рудовании [3]. При реализации метода делается 
предположение о линейном характере зависимости 
между значением утечки и уровнем акустического 
сигнала. Линейный характер зависимости не всегда 
подтверждается экспериментально, что и приводит 
к ошибкам при локализации течи;

3)  сопоставление спектров, основанное на эм-
пирически выявленной закономерности, заклю-
чающейся в том, что появление утечки приводит 

к сужению Фурье-спектра сигнала и смещению  
в область низких частот [5]. Расширение базы экс-
периментов, показывает, что наблюдаемая законо-
мерность является лишь частным случаем. Анализ 
акустических сигналов и соответствующих спек-
тров герметичной и негерметичной арматуры де-
монстрирует, что потоки через несплошности при-
водят к практически непредсказуемым изменениям 
как амплитуды, так и частоты;

4)  энтропийная параметризациия акустических  
и звуковых сигналов [9], по результатам которой де-
лается вывод о наличии и величине протечки. Ме-
тод имеет преимущества перед ранее описанными 
за счет инвариантности к нестационарным и хаоти-
ческим проявлениям. Широкое применение метода 
ограничено сложностью вычисления и необъектив-
ностью выбора параметров расчета (объем и часто-
та выборки, длина окна);

5)  метод сингулярного спектрального анали-
за (Singular spectrum analysis — SSA) предлагается  
в ряде работ для обработки диагностических сигна-
лов [10, 11]. Преимуществом метода является воз-
можность анализа нестационарных рядов. Метод 
позволяет оценить вклад линейных трендов, перио-
дических и хаотических составляющих, т.е. выявить 
любые качественные и количественные измене-
ния. В настоящей работе предлагается обеспечить 
чувствительность при выявлении протечек за счет 
применения SSA к сигналам, зарегистрированным 
ИККП.

Предлагаемый алгоритм обработки сигналов. 
При контроле герметичности измеряют сигналы 
после запорной арматуры (рис. 3). Сигнал, заре-
гистрированный после герметичной арматуры при 
тех же условиях, используется в качестве эталон-

Рис. 1. Измерительный комплекс контроля протечек 
оборудования АЭС

б)

Рис. 2. Акустические датчики: а) GT400; б) GT205

а)
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ного. Установление отклонений в работе оборудо-
вания базируется на сопоставлении характеристик 
его сигналов в исправном и неисправном состоя-
нии, причем сопоставление характеристик исход-
ных сигналов не обеспечивает явных признаков 
различия. Известно, что низкочастотная модулиру-
ющая составляющая несет в себе максимум диагно-
стической информации [12]. В практике обработки 
диагностических сигналов выделения модулиру-
ющей составляющей на несущей частоте хорошо 
зарекомендовал себя метод получения огибающей 
путем вычисления скользящего среднеквадратично-
го значения (СКЗ) [13, 14]. Метод СКЗ — простой 
способ, обеспечивающий демодуляцию и одновре-
менно фильтрацию случайной составляющей. При 
вычислении число точек усреднения l выбирается  
в соответствии с отношением частоты дискретиза-
ции и несущей частоты (при измерении c исполь-
зованием датчика GT400 несущая — около 60 кГц). 
При использовании метода СКЗ по исходному дис-
кретному сигналу, включающему L значений, рас-
считываются отчеты огибающей от x

1
 до x

L+1–l
 как 

средние квадратические значения. Окно выходного 
сигнала построено в соответствии с уравнением 1, 
содержит значения:

                                        . 

В соответствии с известным алгоритмом SSA для 
обработки диагностических сигналов предложена 
последовательность преобразований временных ря-
дов. Амплитуды огибающей диагностического сиг-
нала представляют собой последовательность вида:

                                         .

Исходная последовательность значений преоб-
разуется в ганкелеву матрицу:

                                                     .

Матрица [A] преобразуется в матрицу ковари-
ации:

                                                                  .

Ковариационная матрица подвергается сигну-
лярному разложению: 

                                                 ,
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  — две унитарные матрицы, со-
стоящие из левых и правых сингулярных векторов 
соответственно, [S]

mn — матрица с неотрицатель-
ными элементами, у которой элементы, лежащие 
на главной диагонали, — это сингулярные числа (а 
все элементы, не лежащие на главной диагонали, 
являются нулевыми). Сингулярные числа состав-
ляют сингулярный спектр, отражающий в поряд-

ке убывания вклад каждой из m компонент раз-
ложения. Спектр сигнала герметичной арматуры 
может быть достаточно точно описан минимумом 
своих составляющих. Спектр акустического сиг-
нала, который формируется под действием шума  
от течи, в большинстве случаев является сложным, 
а его сингулярный спектр будет отличаться от спек-
тра сигнала без течи [15].

В результате сингулярного разложения матрицы, 
соответствующей сигналу герметичной арматуры, 
получается эталонный базис. На данный базис про-
изводился проецирование матриц, соответствую-
щих сигналам герметичной арматуры и анализируе-
мой арматуры. Для того, чтобы проекции отражали 
качественные различия сигналов, производится ум-
ножение на траекторные матрицы. Таким образом, 
получаются отмасштабированные проекции срав-
ниваемых сигналов на эталонный базис:
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



l

i
ik x

l
x

1

21
 

 Nxxx ..., 21  

 
























Nmm

n

n

xxx

xxx

xxx









1

132

21

A  

 

     
     

      























Nmmm

n

n

xVarxCovxxCov

xxCovxVarxxCov

xxCovxxCovxVar









11

12221

1211

C  

       T nnnmnmnm   VSUC  

 T nnV  

     111 SAVA   

     222 SAVA   

 1A ,  2A  

 11A ,  12A . 

 

 — траекторные матрицы эталонного  
и анализируемого сигналов;

[S
1
], [S

2
] — собственные значения траекторных 

матриц эталонного и анализируемого сигналов.
Об эффективности применения алгоритма для 

выявления негерметичности можно судить по про-
екциям на первую компоненту 
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. Стати-
стическое сопоставление гипотез (в данном случае 
арматура «герметичная» и «негерметичная») про-
водится путем вычисления ошибок первого и вто-
рого рода по функциям плотности распределения 
вероятности [16]. Задачу анализа чувствительности, 
соответствующей методам диагностики оборудова-
ния АЭС, мы рассматриваем в контексте проблемы 
оценки риска. В данном контексте чувствительность 
устанавливается в качестве меры определенности 
результата диагностирования и может характери-
зоваться высокой вероятностью верного обнару-
жения и, соответственно, низкой вероятностью 
ошибок. В идеале, когда функции плотности рас-
пределения вероятности параметров герметичной и 
негерметичной арматуры совсем не пересекаются, 
ошибки равны нулю.

Проведение экспериментов. Описанный алго-
ритм был первоначально опробован при обработ-
ке сигналов, зарегистрированных в лабораторных 
условиях. Для получения акустических сигналов 
использовался стенд, представляющий собой ги-
дравлическую петлю, заполненную технической 

                 а)                                      б)

Рис. 3. Форма исходных акустических сигналов и их 
огибающие: а) зарегистрированный после герметичной 
арматуры (эталонный); б) зарегистрированный после 

герметичной арматуры
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водой (рис. 4). Конструкция стенда позволяет по-
вышать температуру до +80 ̊С и давление среды  
до 2,5 МПа. Возможна установка запорных фланце-
вых клапанов типа 15с22нж различных диаметров 
Ду50, Ду100, Ду150. Объем течи в клапане модели-
руется при помощи проставок (рис. 5). 

Табл. 1 (левая часть) описывает типы датчи-
ков и условия проведения экспериментов. В рам-
ках эксперимента задавалась температура t=30°  
и t=80° C, поддерживалось давление 0,5 МПа, ме-
нялись проставки клапана Ду150. Сигнал регистри-
ровался после арматуры с помощью акустических 
датчиков, которые различаются рабочими частота-
ми: низкочастотный Gt205 (40–100 кГц), широко-
полосный Gt300 (100–800 кГц), полосовой Gt400 
(50–250 кГц). 

Для оценки ошибок диагностирования огибаю-
щие сигналов арматуры с проставками и без были 
представлены в виде функций плотности распреде-
ления вероятности. Примеры функций показаны  
на рис. 6. 

При выборе граничного значения используется 
метод минимального числа ошибочных решений. 
Граница, относительно которой принимается реше-
ние о герметичности, из условия минимального зна-
чения суммы ошибок первого и второго рода опре-
делялась значением параметра, при котором обе 
гипотезы равновероятны (функции пересекаются). 

Ошибка первого рода — признана негерметич-
ной, но герметична — рассчитывалась путем сум-
мирования вероятности параметров негерметич-
ного состояния слева от границы. Ошибка второго 
рода — признана герметичной, но негерметична —  
рассчитывалась путем суммирования вероятно-
сти параметров негерметичного состояния справа  
от границы. Аналогично вероятности ошибок были 
оценены после применения к тем же сигналам алго-
ритма на основе SSA. Правая часть табл. 1 содержит 
результаты вычисления ошибок диагностирования 
в зависимости от условий эксперимента, типа дат-
чика и метода обработки данных.

Обсуждение результатов. Результаты попарной 
обработки диагностических сигналов (табл. 1) по-
казывают:

—  сигналы, зарегистрированные датчиком 
Gt400 (серии экспериментов 4 и 5), демонстрируют 
чувствительность к состоянию оборудования и при 
этом, в отличие от датчика Gt205 (серии экспери-
ментов 1 и 2), не реагируют на изменение темпе-
ратуры, поэтому выбор регистрирующего датчика  
в составе ИККП экспериментально обоснован;

—  применение SSA к диагностическим сигна-
лам позволяет снизить или исключить ошибки при 
определении состояния объекта, поэтому целесо- 
образна программная реализация данного алгорит-
ма в ИККП, поскольку значения ошибок после об-
работки снижаются независимо от условий экспе-
римента и вида датчика;

—  отсутствует однозначная зависимость между 
объемом протечки (заданной числом рисок) и ве-
личиной ошибки, иначе говоря, отсутствует зави-
симость между объемом протечки и амплитудой  
и дисперсией сигнала, т.е. данные показатели сами 
по себе не могут использоваться для установления 
наличия и величины протечки.

Выводы. Разработан комплекс контроля про-
течек, предназначенный для контроля герметич-
ности запорной арматуры в трубопроводах АЭС. 

Рис. 4. Схема экспериментального стенда: 1 — блок; 2 — насос консольный; 3 — регулятор давления; 
4 — опрессовочный насос; 5 — кран шаровой; 6 — арматура; 7, 8 — блок Dy50, Dy100, Dy150; 

9 — отвод; 10 — опора неподвижная; 11 — опора подвижная

Рис. 5. Проставки: а) рисунок, б) фото
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Особенностью измерительного комплекса является 
возможность регистрации акустического сигнала  
в широком частотном диапазоне, что обеспечива-
ет чувствительность к наличию протечек. Достоин-
ствами прибора также являются широкий диапазон 
рабочих температур, относительная простота, низ-
кая стоимость комплектации. В основу обработки 
данных положен алгоритм на основе SSA. Приво-
дятся результаты испытаний измерительного ком-
плекса с использованием гидравлического стенда: 
изменяется температура среды и объём протечки, 
используются различные акустические преобразо-
ватели. Эксперименты подтверждают эффектив-
ность комплекса, реализующего автоматическую 

обработку сигнала с последующим выводом о гер-
метичности арматуры. Комплекс контроля протечек 
внедрен на Нововоронежской АЭС и используется 
персоналом по своему назначению.
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REGISTRATION AND SIGNAL 
PROCESSING IN MEASURING 
SYSTEM FOR MONITORING LEAKS 
OF NPP PIPELINE FITTINGS 
The article is devoted to the problem of identification of leakiness of pipeline fittings. 
A measuring system for leak monitoring is described. In contrast to the organoleptic 
approach adopted in practice, automatic signal processing is proposed, followed 
by a conclusion about the tightness of the valve. The automatic processing is based 
on an algorithm based on the analysis of the singular spectrum, which provides an 
increase in sensitivity. The effectiveness of the complex is confirmed by the test 
results of the measuring complex using a hydraulic stand.

Keywords: valve leakage, acoustic signal, operating frequency range, singular 
spectrum analysis, statistical hypothesis testing, errors of the first and second kind.
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