
111

О
М

С
К

И
Й

 Н
А

У
Ч

Н
Ы

Й
 ВЕС

ТН
И

К
.   №

 3 (195)  2025 
O

M
SK

 SC
IEN

TIFIC
 BU

LLETIN
  N

O
. 3 (195)   2025

УДК/UDC 621.3.084
DOI: 10.25206/1813-8225-2025-195-111-117
EDN: XFLFCI
Научная статья/Original article

МЕТОДЫ И АППАРАТУРА МЕТРОЛОГИЧЕСКОЙ АТТЕСТАЦИИ 
ФАЗОИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ

Л. Р. Григорьян1, Н. М. Богатов1, Р. Л. Григорьян2

1Кубанский государственный университет, г. Краснодар
2ООО Научно-производственная фирма «Мезон», г. Краснодар

В работе проанализированы основные параметры фазоизмерительной аппаратуры, характеризую-
щие предельную точность фазовых методов измерения: 

—  основная погрешность при равных уровнях исследуемых сигналов;
—  амплитудно-фазовая погрешность при неравных уровнях исследуемых сигналов. 
Аппаратурным метрологическим обеспечением при определении данных составляющих погреш-

ностей являются:
—  разработанный микроконтроллерный двухфазный калибратор фазы на базе DDS-генераторов, 

точность задания фазовых сдвигов которого в частотном диапазоне до 1 МГц составляет сотые доли 
градуса;

—  калиброванный аттенюатор Д2-31 с фиксированными значениями ослабления в 10 дБ, собствен-
ная фазовая погрешность которого на частоте 1 МГц не превышает 0,03º.

Приведенные характеристики аппаратуры метрологической аттестации в целом свидетельствуют  
о возможности обеспечения нормативно-заданных параметров фазоизмерительной аппаратуры.
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The paper analyzes the main components characterizing the accuracy of phase measurement methods:
—  basic error, at equal levels of the signals under study;
—  amplitude-phase error at unequal levels of the signals under study.
The hardware for determining these error components is:
—  a developed microcontroller two-phase phase calibrator based on DDS generators, the accuracy of 

setting phase shifts of which in the frequency range of up to 1 MHz is hundredths of a degree;
—  a calibrated attenuator D2-31 with fixed attenuation values of 10 dB, providing a phase error at a 

frequency of 1 MHz of no more than 0,03º.
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Введение
Понятие фазы, как определение, характеризу-

ет состояние колебательного процесса в заданный 
момент времени. Применимо к гармоническим ко-
лебаниям U = U

m
sin(t+), где аргумент (t+) 

является математической фазой. 
В измерительном аспекте кроме фазы (t+) 

вводятся понятия угловой частоты  и максималь-
ной амплитуды U

m
 гармонического сигнала [1–3]. 

Определив параметры гармонического сигна-
ла, можно приступить к количественной их оцен-
ке. При этом надо заметить, что наиболее сложной 
процедурой по сравнению с измерениями ампли-
тудных и частотных параметров является оценка 
фазового параметра [4]. Объясняется это тем, что 
фаза является «внутренним» параметром, как бы 
замаскированным амплитудой и частотой исследу-
емого сигнала [5].

При метрологической аттестации фазоизмери-
тельной техники различают фазовую погрешность 
при равных и неравных уровнях исследуемых сиг-
налов. 

В первом случае погрешность обозначают как 
основную, а во втором — как амплитудно-фазовую. 
Соответственно, аппаратурным обеспечением оцен-
ки данных фазовых составляющих погрешностей 
являются:

—  калибраторы фазы, точность задания фазо-
вого сдвига которых определяет в целом основную 
фазовую погрешность;

—  аттенюатор, собственная фазовая погреш-
ность которого обеспечивает необходимую точ-
ность оценки амплитудно-фазовой погрешности 
фазоизмерительной аппаратуры. 

Определив цель и содержание данной работы, 
последующий анализ проведем раздельно для двух 
обозначенных составляющих погрешностей.

1.  Измерение основной погрешности при атте-
стации фазоизмерительной техники осуществляет-
ся, как правило, с использованием образцовых мер 
фазового сдвига. Некоторым исключением является 
метод самоповерки с использованием неградуиро-
ванных фазовращателей. В дальнейшем этот ме-
тод исследовался в работе [6] и в настоящее время 
практически не используется. 

Впервые применение образцовых мер фазово-
го сдвига было предложено в работе [7] при соз-
дании фазового сдвига на калиброванной часто-
те с использованием фазовращателя, состоящего  
из отдельных радиоэлектронных компонентов (кон-
денсаторов и резисторов).

Однако вследствие жестких требований, предъ-
являемых к стабильности частоты сигнала и к эле-
ментам фазосдвигающей цепочки, данный способ 
поверки не получил распространения.

Более перспективным направлением следует 
признать применение RC-элементов при использо-

вании свойства инвариантности в дифференцирую-
щем и интегрирующем режимах их применения [8].

Коэффициенты передачи K
Д
, K

И
 и фазовые 

сдвиги дифференцирующей и интегрирующей RC-
цепочки (рис. 1) определяются выражениями [9]:

  ,         (1)
 

.        (2)

Используя соотношение

,                 (3)

запишем: 
Д
 – 

И
 = 90 º. 

При 
0
 = 1/RC коэффициенты передачи цепо-

чек одинаковы, а создаваемые ими фазовые сдвиги 
равны по модулю:

.  (4)

В работе [9] приведены структурные схемы  
и рассмотрены основные составляющие погрешно-
сти предлагаемого способа поверки аппаратуры. 

Ограничения данного метода очевидны, но по 
сравнению с методом самоповерки его применение 
позволило оценить реальную погрешность серийно 
выпускаемых фазометров Ф2-16, Ф2-17 при фикси-
рованном эталонном фазовом сдвиге 90 º.

Задача метрологического обеспечения фазоиз-
мерительной аппаратуры в полном объеме успеш-
но была решена только при создании калибраторов 
фазы на основе разработанных двухфазных генера-
торов [10–12].

Началом развития этого направления следует 
считать работу [13], в которой изложены базовые 
принципы реализации структуры цифрового двух-
фазового генератора синусоидальных сигналов.

Дальнейшим развитием этого направления сле-
дует считать структуру [14], в которой решена за-
дача радикального повышения точности задания 
фазового сдвига выходного напряжения регулиру-
емого канала относительно опорного.

Практической реализацией данного направле-
ния является серийно выпускаемый калибратор 
фазы Ф1-4, предназначенный для воспроизведения 
углов фазового сдвига между двумя гармонически-
ми сигналами в диапазоне частот от 5 Гц до 10 МГц 
и с точностью в пределах сотых долей градуса [15].

Существенным недостатком рассматриваемых 
структур калибраторов фазы является их реализа-
ция на основе применения цифровых элементов 
жесткой логики [16]. 

Дальнейшее развитие этого направления стало 
возможным с развитием микроэлектроники и появ-
лением сверхбольших интегральных схем в широ-
ком номенклатурном диапазоне [17], что позволило 
оптимизировать структуру цифровых двухфазных 
генераторов [18, 19]. Одним из направлений этой 
оптимизации является применение ортогональных 
фазовых структур как в части воспроизведения 

                 a)                                            б)
Рис. 1. Принципиальные схемы дифференцирующей (а) 

и интегрирующей (б) RC цепочек
Fig. 1. Schematic scheme of differentiating (a)

 and integrating (б) RC circuits


















RC

arctg

RC

KД ω

ω

1
,

1
1

1
Д2

 

 RCarctg

RC

KИ ω

ω











 И2
,

1
1

1
 

  





 90
1

τ
τ arctgarctg  

         45,
2

1
0000 ωωωω ИДИД KK  

a Ф  

 


















RC

arctg

RC

KД ω

ω

1
,

1
1

1
Д2

 

 RCarctg

RC

KИ ω

ω











 И2
,

1
1

1
 

  





 90
1

τ
τ arctgarctg  

         45,
2

1
0000 ωωωω ИДИД KK  

a Ф  

 


















RC

arctg

RC

KД ω

ω

1
,

1
1

1
Д2

 

 RCarctg

RC

KИ ω

ω











 И2
,

1
1

1
 

  





 90
1

τ
τ arctgarctg  

         45,
2

1
0000 ωωωω ИДИД KK  

a Ф  

 


















RC

arctg

RC

KД ω

ω

1
,

1
1

1
Д2

 

 RCarctg

RC

KИ ω

ω











 И2
,

1
1

1
 

  





 90
1

τ
τ arctgarctg  

         45,
2

1
0000 ωωωω ИДИД KK  

a Ф  

 



113

О
М

С
К

И
Й

 Н
А

У
Ч

Н
Ы

Й
 ВЕС

ТН
И

К
.   №

 3 (195)  2025 
O

M
SK

 SC
IEN

TIFIC
 BU

LLETIN
  N

O
. 3 (195)   2025

фазовых сдвигов, так и измерения разности фаз 
между двумя гармоническими сигналами в широ-
ком частотном диапазоне [20, 21].

Применимо к рассматриваемой задаче анализа 
основной погрешности фазоизмерителей техники 
на рис. 2 представлена функциональная схема двух-
канального генератора с регулируемым фазовым 
сдвигом между каналами. 

Отличительными особенностями представлен-
ной схемы являются:

—  применение двух DDS-генераторов AD9834 
[22] в качестве задающего двухканального источни-
ка сигналов;

—  синхронизация обоих DDS-генераторов  
от одного высокостабильного кварцевого источника 
сигналов ОСХО;

—  использование общего источника питания U 
для обоих DDS-генераторов;

—  синхронизация от единого микроконтролле-
ра ATmega640;

—  симметричность и идентичность схемотехни-
ки выходных каналов двухфазного генератора, по-
строенных на прецизионных операционных усили-
телях AD8032 и AD8031. 

Экспериментальная проверка данного источни-
ка калиброванных фазовых сдвигов подтвердила 
следующие его технические характеристики:

—  частотный диапазон сигналов от 10 Гц  
до 10 МГц;

—  динамический диапазон выходного сигнала 
2 В;

—  разрешающая способность воспроизведения 
фазовых сдвигов 0,01 º. 

Из анализа приведенных характеристик следует 
возможность его использования при поверке основ-
ной погрешности фазометров класса 0,1º в диапазо-
не частот до 10 МГц. 

2. Рассмотрим далее аппаратурные методы оцен-
ки фазоамплитудной погрешности фазоизмеритель-
ной техники. 

Фазоамплитудную погрешность определяют ме-
тодом «аттенюатора» путем сличения фазоампли-
тудной характеристики каждого канала поверяе-
мого прибора с фазоамплитудной характеристикой 
образцового аттенюатора, в качестве которого ис-
пользуется набор до семи штук последовательно 
соединенных аттенюаторов типа Д2-31. Фазоам-
плитудную погрешность определяют раздельно для 
каждого канала прибора по структурной схеме по-
верки, приведенной на рис. 3. 

Измерение проводят на нижней, средней и верх-
ней частотах с использованием генератора Г4-164  

и набора аттенюаторов Д2-31 с фиксацией показа-
ний поверяемого прибора Ф (рис. 4) и оценки его 
фазоамплитудной погрешности по формуле (5): 

 ,                       (5)

где a — фазовый сдвиг, вносимый аттенюаторами 
Д2-31. 

При этом экспериментальные исследования се-
рийно-выпускаемых фазометров Ф2-34 показыва-
ют, что фазоамплитудная погрешность исследуемых 
приборов нелинейно зависит от величины осла-
бления сигнала. Например, значение погрешности 
при ослаблении на 60 дБ может быть сравнима со 
значением погрешности при меньших ослаблениях 
сигнала. Для устранения этого эффекта поверку не-
обходимо производить последовательно при осла-
блениях 10, 20, 30, 40, 50 и 60 дБ. 

При определении фазоамплитудной погрешно-
сти методом «аттенюатора» возникает погрешность 
рассогласования 

p
, обусловленная влиянием ем-

кости каналов фазометра. Для исключения этого 
эффекта в схему поверки погрешности фазометра 
введены развязывающие аттенюаторы с общим ос-
лаблением 16 дБ. 

Рис. 2. Функциональная схема двухфазного генератора
Fig. 2. Functional scheme of a two-phase generator

Рис. 3. Структурная схема поверки 
фазоамплитудной погрешности 

Fig. 3. Structural scheme of phase-amplitude error verification

Рис. 4. Используемые приборы при измерении
 фазоамплитудной погрешности 

Fig. 4. Devices used to measure phase-amplitude error
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При входной емкости не более 30 пФ приме-
нение развязывающих аттенюаторов уменьшает 
ее влияние до значений 

р
 = 0,15º на частотах  

10 МГц и 
р
 = 0,015º на частоте 1 МГц.

Рассмотрим далее влияние на точность поверки 
аттенюаторов Д2-31, которые представляют собой 
широкополосные резистивные аттенюаторы с поло-
сой рабочих частот от 0 до 2 ГГц [23].

При этом фазовый сдвиг вносимый данными ат-
тенюаторами на частотах до 100 МГц прямо про-
порционален частоте сигнала и определяется его 
электрической длиной и фазоамплитудной погреш-
ностью резистивного делителя, которая пренебре-
жительно мала [24]. В табл. 1 приведены результа-
ты исследования фазовых параметров заводской 
партии аттенюаторов Д2-31 в количестве 9 штук 
на частоте 100 МГц с использованием установки 
для проверки аттенюаторов ДК1-12, выполненных 
Нижегородским научно-исследовательским прибо-
ростроительным институтом. Из анализа данных 
табл. 1 следует, что фазовый сдвиг аттенюаторов 
Д2-31 на частоте 100 МГц находится в пределах  
’ = (9,20,3)º. 

Учитывая, что собственная погрешность уста-
новки ДК1-12 на частоте 100 МГц минимальна и не 
превышает 

уст
 = 1º, результирующее значение 

фазового сдвига аттенюатора на частоте 100 МГц 
определяется величиной = (9,21,3)º. 

С учетом изложенного погрешность задания фа-
зовых сдвигов с использованием аттенюаторов Д2-
31 определяется выражением:


ат

 = 
р
 + 

f 
 n,

где 
р
 — погрешность рассогласования за счет C

вх 

фазометра; 
f
 — погрешность определения фазо-

вого сдвига аттенюатора на частоте f; n — число 
аттенюаторов.

Тогда погрешности 
ат

 при ослаблении 10, 
20, 30, 40, 50 и 60 дБ на частоте 10 МГц будут 
равны 0,27º, 0,39º, 0,51º, 0,63º, 0,75º, 0,87º,  
а на частоте 1 МГц равны 0,03º, 0,04º, 0,05º, 0,06º, 
0,075º, 0,09º. Учитывая, что значение погрешности 
задания фазового сдвига с помощью аттенюаторов 
Д2-31 не превышает 20 % от нормируемой фазоам-
плитудной погрешности прибора, использование 
аттенюаторов Д2-31 в качестве образцовой меры 
при определении фазоамплитудной погрешности 
допустимо.

3. Экспериментальная проверка рассматривае-
мых аппаратурных методов метрологической атте-
стации фазометров была проведена при поверке 

серийно выпускаемых фазометров Ф2-34 в количе-
стве трех штук (приборов). Основной вывод из про-
веденной метрологической аттестации заключается 
в том, что измеренные значения как основной, так 
амплитудно-фазовой погрешности соответствуют 
паспортным значениям проверяемой партии прибо-
ров Ф2-34, что означает корректность предложен-
ных как методов, так и аппаратуры метрологиче-
ской аттестации фазоизмерительной техники.

При детальном рассмотрении структуры двух-
канального фазового генератора можно заметить, 
что он содержит как элементы генерации сигналов 
(DDS-генераторы), так и программно-вычислитель-
ный элемент (микроконтроллер) с регистрирующим 
устройством для визуализации управленческих 
функций, что открывает при дополнении его струк-
туры элементами измерения параметров сигналов 
(синхронными детекторами)   возможности созда-
ния универсального измерительного прибора с на-
бором измерительных функций востребованных 
при метрологической оценке параметров фазовой 
аппаратуры [25, 26].

Таблица 1. Фазовый сдвиг аттенюаторов Д2-31
Table 1. Phase shift of attenuators D2-31

№ 
аттенюатора

Ослабление 
аттенюатора, дБ

Фазовый 
сдвиг, φ’, º φi – φ

ср
, º

9586 9,98 9,0 -0,15

38036 10,07 9,0 -0,15

38085 10,16 9,2 +0,05

9594 10,07 9,1 -0,05

38026 10,02 9,4 +0,25

16749 10,1 9,1 -0,05

38096 10,07 9,1 -0,05

38077 10,11 9,3 +0,15

38035 10,13 9,2 +0,05

Рис. 5. Структурная схема универсального анализатора 
параметров сигналов

Fig. 5. Structural scheme of the universal signal 
parameter analyzer

Рис. 6. Анализатор параметров сигналов АПС-01
Fig. 6. Signal parameter analyzer APS-01 
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рительного прибора включает [27]:
—  в режиме генерации сигналов генераторы 

группы Г3 и фазовые калибраторы группы Ф1;
—  в режиме измерения параметров сигналов 

фазометры группы Ф2, вольтметры группы В3 и ча-
стотомеры группы Ч3.

Структурная схема универсального измеритель-
ного прибора и внешний вид опытного образца 
приведены на рис. 5 и на рис. 6 соответственно.

Из анализа структурной схемы прибора следует, 
что основными измерительными его блоками явля-
ются:

—  генераторный блок, структурная схема кото-
рого приведена на рис. 2;

—  измерительный блок, построенный по схеме 
ортогонального оптимального приемника сигналов 
на основе синхронных детекторов [26];

—  блок измерения частоты, структурная схема 
которого приведена на рис. 7. 

Функциональная схема генераторного блока 
приведена на рис. 2 и рассмотрена при анализе его 
применения для поверки основных погрешностей 
фазометра.

Отличительной особенностью измерительного 
блока является реализация ортогонального преоб-
разования сигналов на базе двух ключевых син-
хронных детекторов и 24 разрядного сигма-дельта 
АЦП. Выходы аналого-цифровых преобразователей 
подключены к микроконтроллеру, а входы усилите-
лей-ограничителей — к выходам синтезаторов DDS. 
Такая реализация ортогонального преобразования 
обеспечивает исключение методической погрешно-
сти измерения фазы сигнала при соответствующем 
тактовом алгоритме измерения. 

Отличительным признаком блока измерения ча-
стоты, реализованного по методу сравнения изме-
ряемой частоты f

x
 с известной образцовой частотой 

f
обр

, является применение в качестве образцовых 
сигналов 1 PPS спутниковой Глонасс/GPS системы. 
Данный сигнал поступает на вход формирователя 
времени счета, на выходе которого формирует-
ся интервал времени t, устанавливаемый равным 
10m, где m — целое число, принимающее значение  
от 2 до –3. 

Сигнал измеряемой частоты f
x
 поступает  

на формирующее устройство, преобразующее дан-
ный сигнал в последовательность импульсов. С вы-
хода формирующего устройства импульсы поступа-
ют на временной селектор, на второй вход которого 
поступает сигнал заданного временного интервала 
t. Подсчет импульсов, попадающих в интервал t, 
осуществляется цифровым устройством по форму-
ле n = t  f

x
, из которой определяется значение ча-

стоты f
x
.

В заключение отметим, что взаимодействие 
приведенных электронных блоков осуществляет-

ся через коммутационные элементы, управляемые 
в свою очередь сигналами с программно-вычисли-
тельного блока (микроконтроллера).

Заключение
Проведенный анализ как существующих, так  

и перспективных решений, используемых в практи-
ке метрологической аттестации фазоизмерительной 
аппаратуры, позволил сформулировать следующие 
основные выводы и положения:

1.  Точность фазоизмерительной аппаратуры ха-
рактеризуется двумя составляющими погрешностя-
ми:

—  основной, при равных уровнях исследуемых 
сигналов;

—  амплитудно-фазовой при неравных уровнях 
исследуемых сигналов.

2.  Аппаратурным обеспечением при определе-
нии данных составляющих погрешностей являются:

—  двухфазные генераторы с калиброванным 
фазовым сдвигом между выходными сигналами;

—  калиброванные аттенюаторы Д2-31 с фикси-
рованным значением ослабления 10 дБ.

3.  В качестве калибратора фазы авторами пред-
ложено использовать разработанный микрокон-
троллерный двухфазный генератор на базе DDS-
генераторов AD9834, точность задания фазовых 
сдвигов которых в частотном диапазоне до 1 МГц  
составляет сотые доли градуса.

4.  Аттестация аттенюаторов Д2-31 с использова-
нием установки ДК1-12 обеспечивает фазовую точ-
ность на частоте 1 МГц, не превышающую 0,03 ,  
что вполне достаточно при оценке амплитудно-фа-
зовой погрешности серийно выпускаемых фазоме-
тров Ф2-34. 

5.  Предложенная авторами структура двухка-
нального генератора сигналов открывает возможно-
сти создания универсального измерительного при-
бора с широким набором измерительных функций.
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