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ИСПОЛЬЗОВАНИЕ 
ЭЛЕКТРОИНДУКЦИОННОГО ДАТЧИКА
ДЛЯ ОТСЛЕЖИВАНИЯ ПОДВИЖНЫХ 
И НЕПОДВИЖНЫХ 
ОБЪЕКТОВ НАБЛЮДЕНИЙ
В статье реализуется пространственная модель отслеживания траектории  
с использованием динамических параметров положения объекта, а также 
траектории движения источника электрического поля. Результаты моделиро-
вания показывают высокую точность при оценке взаимосвязи между состав-
ляющими электрического поля и изменением положения. Результаты хорошо 
согласуются с результатами анализа методом конечных элементов. Также ис-
пользуется соотношение между ошибкой измерения составляющей электри-
ческого поля, горизонтальным углом, углом места и точностью отслеживания 
для анализа эффективности отслеживания. Кроме того, метод может быть 
совмещен с пространственно-временными координатами, и в таком случае 
конфигурация адаптируется под текущие условия при сохранении максималь-
ной эффективности системы оценки в целом и позволяет прогнозировать из-
менения положения объекта как источника поля.

Ключевые слова: электрометрические измерения, электрическое поле, трех-
координатный электроиндукционный датчик, подвижные объекты.

Введение. С одной стороны, окружающая сре-
да по своей природе является динамичной, как  
и отдельные источники электрического поля (ЭП), 
так и существует необходимость давать оценку ЭП  
в положении движения датчика (например, с ис-
пользованием беспилотных воздушных систем) или 
другие аэрокосмические объекты [1]) для оценки 
параметров в произвольном местоположении, кото-
рые также могут быть не постоянными и во вре- 
мени. 

В работе [2] представлено использование датчика  
в нефтепромысловых хранилищах.

Стоит отметить, что техническое оснащение по-
стоянно совершенствуется и усложняется. При раз-
работке платформы контроля параметров ЭП [3, 
4] задача оценки представляется для объектов на-
блюдений, находящихся в неподвижном состоянии  
на стационарной области. Для этого рассматривает-
ся применение направления IoT в задаче комплекс-
ной оценки ЭП на различных объектах.

В работе [5] предусматривается вариант, когда 
датчик может быть утерян для системы, например, 
неисправность связи или поломка датчика, в таком 
случае нейроконфигурация сохраняется и адапти-
руется по текущим условиям с сохранением мак-
симальной эффективности системы, при этом объ-
екты наблюдений также находятся в неподвижном 
состоянии.

Датчики параметров ЭП широко используются 
в различных отраслях народного хозяйства. Важно 
отметить, что в работе [6] представлены разрабо-
танные конструкции датчиков и сделаны оценки 
параметров ЭП, а в работе [7] представлен новый 
датчик в составе платформы контроля параметров 
ЭП.

Например, в работе [8] трехмерный датчик 
электрического поля и датчик диэлектрической 
проницаемости используются для обнаружения 
пространственного ЭП, а трехмерная система ЭП 
предлагается для проведения измерения этого поля.

Однако эти исследования не могут отслеживать 
траекторию движения объекта наблюдения в реаль-
ном времени при одновременном измерении ЭП.

Стоит обратить внимание на работу [9], в кото-
рой представлена модель отслеживания грозового 
облака, которая не учитывает положение движения 
первичного датчика. Важно отметить, что эффек-
тивные методы мониторинга оценки параметров 
ЭП в режиме реального времени особенно важны 
для оценки эффективной защиты и прогнозирова-
ния опасных влияний ЭП на окружающие объекты.

Постановка задачи. При использовании дат-
чика в оценке подвижных и неподвижных объек-
тов наблюдений важно реализовать локализацию 
источника в реальном времени. Поэтому следует  
не только оценивать параметры ЭП, но и отслежи-
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вать движение объекта и при этом определять дина-
мические параметры положения. Необходимо учесть  
в значениях результирующих трехмерных компо-
нент ЭП определение динамических параметров 
положения объекта и тем самым реализовать сле-
жение за движением. 

Также важно принять во внимание не только 
высокие метрологические характеристики оценки 
параметров ЭП, но и эффективность отслеживания 
движения в режиме реального времени с учетом 
изменяющихся параметров.

Краткая теория. На основе трехмерной системы 
координат упрощаем область наблюдаемого объек-
та до точечного заряда [10]. Получаем модель от-
слеживания траектории движения наблюдаемого 
объекта на рис. 1.

На рис. 1 представлена трехмерная система ко-
ординат, с началом координат в точке О. Тогда точ-
ка  с координатами (0, 0, 0) будет задавать поло-
жение изотропного электроиндукционного датчика. 

В свободной точке пространства S
t
(x

t
,y

t
,z

t
) — 

динамическое положение точки S
t
 исследуемого 

объекта, изменяющееся во времени T; h — высо-
та устройства относительного нулевого положения,  
соответственно, динамический горизонтальный 
угол и угол вертикальный относительно точки S

t
; 
 

R
t
 — расстояние в реальном времени от точки S

t
  

до устройства O; E
t
 — напряженность электриче-

ского поля в реальном времени в точке S
t
, изме-

ренная прибором; Ex
t
,Ey

t
,Ez

t
 — напряженность ЭП 

относительно осей x, y, z. 
Из рис. 1 видно, что при обнаружении источни-

ка ЭП рядом с датчиком ЭП, то будет накапливать-
ся большое количество заряда. В это время ЭП, соз-
даваемое источником поля, будет восприниматься 
трехмерным датчиком ЭП. 

После этого координаты точки объекта могут 
быть получены расчетным путем, что может слу-
жить источником данных для отслеживания траек-
тории движения объекта.

Отслеживание пути движущегося объекта. Важ-
но отметить, что определение местоположения объ-
екта для интерпретации отслеживания пути движе-
ния грозового облака имеет важное практическое 
значение для прогнозирования и предупреждения 
изменения параметров ЭП.

Согласно теории о том, что наведенный заряд 
равен зеркальному заряду в методе зеркального 

отображения [10], область объекта рассматривается 
как точечный заряд q, а распределение потенциала 
φ

T
  точки в реальном времени относительно точки 

движения S
t
 получается следующим образом:

 .     (1)

В уравнении (1) q’ — это заряд изображения то-
чечного заряда q. 

1
 и 

2
 — диэлектрическая про-

ницаемость воздуха и земли, на которой находится 
датчик O.

Поскольку напряженность ЭП, измеряемая дат-
чиком, представляет собой трехмерный вектор, ко-
торый можно представить в ортогональном разло-
жении:

E
T
 = E

X,T
 + E

Y,T
+ E

Z,T
.               (2)

Если взять производные от распределения по-
тенциала по направлениям осей x, y и z, то получаем

.  (3)

Допустим, что параметр координат объекта мо-
жет превышать высоту h:

 .                     (4)

Согласно рис. 1, расстояние R
T
 от точки S

T
 дат-

чика O — это: 
 

.                     (5)

Уравнения (4) и (5) используем в уравнении (3) 
и получим:

 					     (6)

В уравнении (6)
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В уравнении (6) используются сферические ко-
ординаты (R

T
, 

T
, 

T
) расположения точки S

t
, меня-

ющейся во времени t.

Рис. 1. Пространственная модель для отслеживания 
траектории движения
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(7)

В уравнении (7) R
T
 — это инверсное значение R

T
  

от объекта S
T
 до датчика O.  

T
 и 

T
 — значения 

инверсии динамического горизонтального угла 
t
  

и вертикального угла 
t
.

Когда точечный заряд q и 
1
, 

2
, диэлектрическая 

проницаемость известны, координаты объекта (R
T
, 


Т
, 

Т
) в реальном времени связаны с трехмерны-

ми векторами электрического поля. Соответствен-
но, если E

xT
, E

yT
, E

zT
 определены, то и траекторию 

движения объекта можно рассчитать.
Обозначим набор P динамических координат 

объекта, изменяющихся во времени T, определяет-
ся как

 .          (8)

В выражении (8) Т
1
, Т

2
, … Т

n
 — это первая, вторая  

и n-ая точка времени в соответствии с координата-
ми объекта (R

T1
, 

Т1
, 

Т1
), (R

T2
, 

Т2
, 

Т2
) (), … (R

Tn
, 


Тn
, 

Тn
). 

Используя для расчета положения объекта вы-
ражения (7) и (8), возможно реализовать отслежи-
вание траектории подвижного объекта наблюдения.

Результаты. Проведем анализ результатов отсле-
живания пути подвижных объектов наблюдения. 

Предположим, что диэлектрическая проницае-
мость воздуха 

1
 принимается равной 1, диэлектри-

ческая проницаемость земли 
2
, на которой нахо-

дится датчик, принимается равной 5. Кроме того, 
добавим стандартное отклонение 

Ei
 компонентов 

измерения ЭП для общей производительности ме-
тода отслеживания.

Формула координат объекта наблюдения явля-
ется основой метода отслеживания его движущего-
ся пути. Согласно теории погрешности косвенного 
измерения [11, 12], погрешность измерения 

R
, , 

 расстояния R
T
, горизонтального угла 

T
 и верти-

кального угла 
T
, обусловленная погрешностью из-

мерения составляющей ЭП, может быть получена 
по выражению (7):

 			   (9)

Выражение (9) еще более упрощается, и получаем:

 			   (10)

В выражении (10) ошибка 
R
 отслеживания свя-

зана только с ошибкой измерения расстояния R
T 
и 

ошибкой измерения ЭП, не зависящей от горизон-
тального угла 

T
 и вертикального угла 

T
. Кроме 

того, ошибки ,  связаны с расстоянием R
T
, вер-

тикального угла 
T
 и погрешностью измерения ЭП 


Ei
, но не зависят от угла 

T
.

Следовательно, при практическом применении 
метода отслеживания получаем независимость ре-
зультата от изменения угла горизонтального откло-
нения. В пределах максимального диапазона изме-
рения изотропного электроиндукционного датчика, 
чем меньше расстояние R

T
 и погрешность изме-

рения ЭП 
Ei
, тем выше будет точность измерения 

дальности и определение местоположения объекта 
представленными расчётами.

Выражение (10) используется для изучения вза-
имосвязи между расстоянием R

T
, погрешностью 

измерения ЭП 
Ei
 и погрешностью определения 

дальности метода слежения 
R
. Результаты модели-

рования показаны на рис. 2.
На рис. 2 погрешность определения дальности 

методом слежения 
R
  увеличивается с увеличени-

ем расстояния R
T
 и ошибки измерения электри-

ческого поля 
Ei
. Когда расстояние R

T
 находится  

в диапазоне от 0 до 0,55 км, погрешность измерения 
дальности 

R
 меньше зависит от погрешности из-

мерения электрического поля 
Ei
 и 

Rmax
 и достигает 

только 1 м. Однако когда расстояние R
T 
превыша-

ет 0,55 км, ошибка дальности 
R
 резко возрастает 

с увеличением ошибки 
Ei
 и 

Rmax
 и достигает 6,4 м. 

Точно так же, когда ошибка измерения электриче-
ского поля 

Ei
 меньше 0,15 кВ/м, погрешность даль-

ности 
R
 меньше зависит от расстояния R

T
 и 

Rmax  

и достигает только 1 м. Однако при погрешности 
измерения электрического поля 

Ei
 от 0,15 до 1 кВ/м 

погрешность возрастает 
R
 до 6,4 м с увеличением 

расстояния R
T
. Несмотря на то, что погрешность 

дальности 
R
 этого метода неизбежна, она находит-

ся в измеримом диапазоне и показывает хорошие 
характеристики дальности отслеживания.

При анализе погрешности определения местопо-
ложения датчиком ЭП, согласно выражению (10), 
исследование взаимосвязи между расстоянием R

T
, 

углом 
T
, объекта наблюдения и погрешностью из-

мерения его горизонтального угла . Представим 
анализ на рис. 3.

На рис. 3 погрешность измерения горизон-
тального угла  метода слежения увеличивается  
с увеличением расстояния R

T
 и вертикального угла 


T
. Когда расстояние r’ составляет от 0 до 0,42 км,  

на погрешность измерения меньше влияет верти-
кальный угол 

T
, тогда погрешность измерения  
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Рис. 2. График погрешности измерения расстояния 
объекта наблюдения
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составляет менее 0,2 градуса; однако когда рассто-
яние r’ превышает 0,42 км, погрешность измерения 
 экспоненциально возрастает с увеличением угла 


T
 и достигает 1,07 градуса. Когда расстояние R

T
, 

и угол 
T
 становятся еще больше, погрешность  

резко возрастает с увеличением этих двух величин. 
Однако в большинстве случаев ни то, ни другое 
практически не влияет на погрешность .

Используя выражение (10), представим взаимо- 
связи между расстоянием R

T
, вертикального угла 


T 
места объекта измерения и погрешностью из-

мерения его угла , а результаты моделирования 
представим на рис. 4.

На рис. 4 погрешность измерения угла  при от-
слеживании положения увеличивается с увеличени-
ем расстояния R

T
 и угла 

T
; при расстоянии от 0 до 

0,35 км погрешность измерения  меньше зависит 
от угла 

T
 и достигает только 0,005 градуса; ког-

да расстояние R
T
 превышает 0,35 км, погрешность 

измерения  медленно возрастает до 0,0375 граду-
са по мере увеличения угла. Точно так же, когда 
угол 

T
 меньше 30 градусов, погрешность  почти  

не зависит от расстояния R
T
 и max

 достигает толь-
ко 0,01 градуса. Однако когда расстояние R

T
  и угол 


T
 значительно увеличиваются, погрешность изме-

рения также возрастает только до 0,0375 градуса.
На точность определения места положения 

влияет дальность расстояния между целевым объ-
ектом измерения и датчиком. Из рис. 3 и рис. 4 
легко увидеть, что, как только предельная дальность 
обнаружения прибора превышена, кривая, вызван-
ная этим влиянием, становится все более резкой,  
а погрешность значительно возрастает. Однако, 
хотя погрешности определения места положения 
нельзя избежать, величина невелика и все еще под-
дается обнаружению и может быть учтена в после-
дующих расчетах.

Моделирование системы и конструкции изо-
тропного электроиндукционного датчика. Для 
практической реализации спроектирована система 
(рис. 5), включающая изотропный электроиндукци-
онный датчик [6], в котором объединены блок изме-

рения ЭП блока калибровки ЭП и блока измерения 
диэлектрической проницаемости для оценки смеж-
ных объектов. Также объединяем данные локали-
зации источника ЭП и данных геоположения для 
анализа экспериментальных результатов.

Один из вариантов конструкций изотропного 
электроиндукционного датчика схематично пред-
ставлен на рис. 6.

Датчик представляет собой проводящее сфери-
ческое основание 1, на поверхности которого изо-
лированно от него и друг от друга по трем коорди-
натным осям диаметрально расположены три пары 
проводящих чувствительных элементов. По оси x: 2 
и 3, по оси y: 4 и 5 (на рис. 6 не показан), по оси z: 
6 и 7. Чувствительные элементы выполнены в фор-
ме сферических сегментов, толщина которых много 
меньше радиуса сферического основания датчика. 
На чувствительных элементах, расположенных по 
трем координатным осям датчика, формируются 
сигналы, пропорциональные трем составляющим 
вектора напряженности ЭП E

x
, E

y
 и E

z
. Путем их 
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.  
Принцип действия датчика основан на явлении 
электростатической индукции.

Рис. 3. График анализа погрешности измерения 
горизонтального угла

Рис. 4. График анализа погрешности измерения
 угла положения

Рис. 5. Обобщенная структурная схема системы

Рис. 6. Изотропный датчик 
напряженности электрического поля
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Выводы и заключения. Таким образом, исследуя 
взаимосвязь между компонентой ЭП и физической 
величиной положения объекта наблюдения, можем 
сделать возможным отслеживание траектории дви-
жения. Получено соотношение координат объекта 
наблюдения с моментом времени. На основе изо-
тропного датчика ЭП установлена модель отслежи-
вания траектории движения объекта наблюдения.

Стоит отметить, что фактически положение  
объекта нельзя определить по одномерной состав-
ляющей ЭП, что приводит к недостаточной способ-
ности предупреждения в практическом примене-
нии, поэтому важно использовать именно оценку 
трех составляющих ЭП.

Общие характеристики определения параме-
тров ЭП движущегося объекта наблюдения, места 
положения методом отслеживания пути движения  
объекта достаточны. В реальных экспериментах 
могут быть введены такие алгоритмы, как объ-
единение данных и компенсация точности, чтобы 
уменьшить негативное влияние рода нелинейного 
поведения на производительность определения ме-
стоположения грозовых облаков.

Результаты исследования показывают, что этот 
метод может точно отслеживать траекторию движе-
ния объекта наблюдения, и, кроме того, этот метод 
комбинируется с обработкой данных специализи-
рованной библиотекой Python [13] с геопозицио-
нированием объекта, что позволяет лучше прогно-
зировать значение параметров ЭП с изменениями 
направления движения.
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USING ELECTRO-INDUCTIVE SENSOR 
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The research carries out a spatial model of path tracking using the dynamic 
parameters of the object's position, as well as the path of motion of electric field 
source. The simulation results show high accuracy in estimating the dependence 
between the electric field components and position modifications. The results are 
in good agreement with the results of FEM analysis. The connection between the 
measurement error of the electric field component, horizontal angle, location angle, 
and tracking accuracy is also used to analyze the tracking performance. In addition, 
the method can be combined with spatiotemporal coordinates, in which case the 
configuration becomes appropriate to the current conditions while maintaining 
maximum efficiency of the estimation system as a whole and allows predicting 
changes in the position of the object as a field source.
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