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АНАЛИЗ ТЕМПЕРАТУРЫ 
И СРАВНЕНИЕ ПОТЕРЬ 
АКТИВНОЙ МОЩНОСТИ 
В НЕСТАЦИОНАРНОМ 
И СТАЦИОНАРНОМ 
ТЕПЛОВОМ РЕЖИМЕ 
ВОЗДУШНЫХ ЛИНИЙ 
ЭЛЕКТРОПЕРЕДАЧИ
В статье рассмотрено распределение температуры с повышенными токами  
в нестационарном тепловом режиме воздушных линий электропередачи. По-
строено распределение температуры по длине линии для проводов марок 
АС-240/32 и G(Z)TACSR 240. Построены зависимости температуры от време-
ни. Практическая ценность рассматриваемой в статье математической модели 
заключается в определении максимальных температур воздушных линий раз-
ных сечений в нормальном или послеаварийном режиме провода. Проведен 
сравнительный анализ потерь активной мощности в стационарном тепловом 
режиме с учетом и без учета осевой передачи тепла. Сравнение показало, что 
учет осевой передачи тепла уточняет потери активной мощности, что позво-
ляет с большей точностью ввести мероприятия по уменьшению этих потерь.

Ключевые слова: потери мощности, неизолированный провод, нестационар-
ный тепловой режим, стационарный тепловой режим, температура провода, 
уравнение теплопроводности, осевая передача тепла, метод конечных раз-
ностей.

На данный момент актуальным направлени-
ем в электроэнергетике является учет тепловых 
процессов в воздушных линиях электропередачи. 
Подтверждается этот факт множеством научных 
статей. В публикациях описаны способы повыше-
ния точности расчета потерь активной мощности  
с учетом тепловых процессов как для стационарно-
го режима неизолированных [1, 2] и изолирован-
ных проводов [1, 3, 4], так и для нестационарного 
режима неизолированных [5, 6] и изолированных 
[7] проводов. В научной статье [8] подробно опи-
сывается метод, основанный на динамическом те-
пловом расчете линии с учетом погодных условий 
в реальном времени, рассмотрено повышение про-
пускной способности линии на примере реальной 
распределительной сети. Однако все вышепере-
численные научные труды обладают недостатком,  
а именно они не учитывают осевую передачу тепла. 
Также расчет температуры производится в нормаль-
ном режиме работы провода. Если математическая 
модель, представленная в [9] с учетом радиаль-
ной передачи тепла, решает данный недостаток,  
то для учета осевой передачи тепла область изуче-
на не полностью. Поэтому произведем тепловую 
оценку повышенных токов при распределении их 
по длине линии для нестационарного теплового ре-
жима провода.

Уравнение теплопроводности неизолированно-
го провода для осевой передачи тепла. Запишем 
частный случай уравнения теплопроводности тон-
кого стержня, приведенного в [9], в котором кон-
кретизированы способы охлаждения и учтена тем-
пературная зависимость активного сопротивления 
провода. Как и в предыдущем источнике [9], ввиду 
излишней громоздкости, не будем учитывать сол-
нечную радиацию. С учетом вышесказанного, урав-
нение теплопроводности примет следующий вид

 ,               (1)

где λ — коэффициент теплопроводности провода;  
F и r — сечение и радиус провода; Θ и Θ

окр
 — темпе-

ратуры провода и окружающей среды, C; I — сила 
электрического тока; r

0
 — погонное активное со-

противление провода при 0 C; α — температурный 
коэффициент сопротивления; a

тп
 — коэффициент 

теплопередачи (формула для его расчета представ-
лена в [9]); C

п
 — погонная теплоемкость провода 

(теплоемкость на единицу длины); t — время.
Метод конечных разностей для решения уравне-

ния теплопроводности для нестационарного режи-
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ма провода. Уравнение (1) в общем случае можно 
решить только численными методами. Сперва для 
решения этой задачи был рассмотрен и метод при-
стрелки (метод стрельб), он позволяет задать гра-
ничные условия по концам провода, но решение 
все равно расходится, из-за большой длины про-
вода. Поэтому прибегнем к методу конечных раз-
ностей. Этот метод, в отличие от метода конечных 
элементов, выбран по причине достаточно быстрой 
сходимости решения и малозатратности ресурсов 
при вычислении на ЭВМ. У метода конечных раз-
ностей существует два подхода для решения урав-
нения теплопроводности (1) [10]. Первый основан 
на составлении явной конечно-разностной схемы, 
но так как эта схема считается условно-устойчивой 
[10] из-за строгого задания шага конечно-разност-
ной сетки, то в дальнейшем будем использовать не-
явную конечно-разностную схему (рис. 1). 

Граничные условия приведены ниже:

 .        (2)

Пространственный шаг представлен в следую-
щем виде

— по оси Оx h 

 ,                          (3)

— по времени τ

 ,                           (4)

где L — длина провода, м; N — число отрезков при 
разбиении по координате x; t — расчетное время, с; 
J — число отрезков при разбиении по расчетному 
времени t.

Заменим дифференциальное уравнение в част-
ных производных (1) его разностным аналогом для 
всех слагаемых, содержащих переменную Θ

пр
. 

Получим следующие выражения (5–6):

 ,                (5)

 .       (6)

Подставим их в уравнение (1), и после преоб-
разований относительно Θ

пр
, получим уравнение (7)

 

 	 .           (7)

После чего заменим свободные члены уравне-
ния (7) следующими коэффициентами:

 

.         (8)

Получим следующее уравнение (9):
 
			   .          (9)

Далее, чтобы избавиться от 
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, введем про-
гоночные коэффициенты α

i–1
 и  β

i–1
, при которых 

можно получить следующее значение 
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, т.е.

 ,              (10)

 .                (11)

Из уравнения (10) подставим 
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 в уравнение 
(9) и выразим 
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иное, как α
i
 и β

i
  уравнения (11), т.е.

 ,                     (13)

 .                     (14)

На следующем этапе, чтобы определить α
i
 и β

i
,
 

необходимо найти начальные значения α
1
 и β

1
, ко-

торые мы сможем определить исходя из граничных 
условий, таких как

Θ
пр1

 = α
1
Θ

пр2
+β

1
, т.к. Θ

пр1
 = Θ

пр
 = Θ

г1
,

то отсюда следует, что

α
1
=0, β

1
=Θ

г1
.                       (15)

Согласно [10], для достаточных условий кор-
ректности и устойчивости прогонки уравнений (9) 
должны выполняться следующие условия
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Рис. 1. Шаблон четырехточечной неявной
 конечно-разностной схемы
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Пример численного решения уравнения тепло-
проводности для нестационарного режима прово-
да. Проведем тепловую оценку повышенных токов 
с учетом времени для провода АС-240/32 и высо-
котемпературного провода G(Z)TACSR 240 напря-
жением 220 кВ, при различных длинах 1 м, 10 м,  
100 м, 10 км с граничными условиями Θ

0
 = Θ

г1
 = 

= Θ
г2
 = –20 C и температуре окружающей среды 

Θ
окр

 = –20 C (рис. 2–9). Исходные данные для 
расчета приведены в табл. 1. Здесь повышенный 

ток был рассчитан исходя из уравнения в [9]. Он 
соответствует температуре неограниченно длинно-
го провода, равного Θ

д
= +∞,  в целях показать не-

ограниченный рост теплового масштаба длины.
Выводы и заключение. Как доказано ранее  

в [9], влияние граничных условий зависит от тепло-
вого масштаба длины, и если длина линии для ста-
ционарного режима провода превышает (200…500)
LТ, то граничные условия перестают влиять на ее 
температурный режим, что и показано на рис. 10  

Рис. 2. Зависимость Θ(t) для АС-240/32 при 1,2 Iдоп 
и длине линии L = 1 м, температура взята

 при x = 0,5 м (НР), x = 0,5 м (ПАР)

Рис. 3. Зависимость Θ(t) для АС-240/32 при 1,4 Iдоп 
и длине линии L = 10 м, температура взята

 при x = 9,6 м (НР), x = 9,5 м (ПАР)

Рис. 4. Зависимость Θ(t) для АС-240/32 при 1,6 Iдоп 
и длине линии L = 100 м, температура взята

 при x = 99,9 м (НР), x = 99,9 м (ПАР)

Рис. 5. Зависимость Θ(t) для АС-240/32 при 1,848 Iдоп 
и длине линии L = 10000 м, где пунктирной линией 
показана формальная область решения уравнения, 

не имеющая отношения к реальному объекту, 
температура взята при x = 9,99 км (НР), x = 9,99 км (ПАР)

Рис. 6. Зависимость Θ(t) для G(Z)TACSR 240 при 1,1 Iдоп 
и длине линии L = 1 м

Рис. 7. Зависимость Θ(t) для G(Z)TACSR 240 при 1,2 Iдоп 
и длине линии L = 10 м, температура взята

 при x = 9,6 м (НР), x = 9,5 м (ПАР)
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и рис. 11. В остальных же случаях (рис. 12–15) на-
блюдается существенное влияние граничных усло-
вий, например, максимум температуры при длине 
линии в 1 м для неизолированных проводов АС-
240/32 и G(Z)TACSR 240 приходится ровно на по-
ловину от всей длины воздушной линии электро-
передачи. Можно сказать, что рассматриваемая 
математическая модель при осевой передаче тепла 
имеет практическую ценность. 

К примеру, по рис. 10–14 можно определить 
максимальную температуру провода для нор-
мального и послеаварийного режима. А по рис. 5 
(АС-240/32) и рис. 9 (G(Z)TACSR 240) — при по-
вышенных токах, когда Θ

д
 = +∞ при достижении 

времени 1642 с (Θ
пл.пр.

 
АС

 = 660  °C) и соответственно 
1881 с (Θ

пл.пр.
 

G(Z)TACSR 
= 1100 °C) наблюдается плав-

ление токоведущих частей провода. К тому же для 
стационарного теплового режима с учетом осевой 
передачи тепла (формула (1)) и без учета (расчет-
ные формулы приведены в [6]), максимальная от-
носительная погрешность потерь мощности при  
t = ∞ (табл. 2) составила 4,05 %. Отсюда можно сде-
лать следующий вывод, что учет осевой передачи 
тепла уточняет потери активной мощности, что по-
зволяет с большей точностью ввести мероприятия 
по уменьшению этих потерь. Также представлен-
ные на рис. 10–15 результаты численного расчета 
в дальнейшем позволят применить данную матема-

Рис. 8. Зависимость Θ(t) для G(Z)TACSR 240 при 1,3 Iдоп 
и длине линии L = 100 м, температура взята

 при x = 99,9 м (НР), x = 99,9 м (ПАР)

Рис. 9. Зависимость Θ(t) для G(Z)TACSR 240 при 1,411 Iдоп 
и длине линии L = 10000 м, где пунктирной линией 
показана формальная область решения уравнения, 

не имеющая отношения к реальному объекту, температура 
взята  при x = 9,99 км (НР), x = 9,99 км (ПАР)

Таблица 1

Исходные данные для расчета

Наименование и обозначение параметра АС-240/32 G(Z)TACSR 240

Погонное активное сопротивление при 0 °C r
0
, Ом/км 0,1094 0,1101

Сечение токоведущей части провода F, мм2 240 248,4

Радиус металлической части провода r, мм 10,8 10,3

Допустимый ток I
доп

, А 605 1190

Ток, при котором Θ
д
 = +∞, кА 1,5812 1,872

Допустимая температура Θ
доп

, °C 70 210

Рис. 10. Распределение температуры по длине линии
 (100 м) в разных режимах провода АС-240/32 

для t = 297 c (НР), t = 371 c (ПАР)

Рис. 11. Распределение температуры по длине линии
 (100 м) в разных режимах провода G(Z)TACSR 240 

для t = 501 c (НР), t = 574 c (ПАР)
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тическую модель для определения температуры на-
грева контактных соединений.
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Марка 
провода

Длина 
ВЛ, м
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шенный 
ток I

пов
, А

α
вын

 [4] Θ
пр
 [4], °C a

тп
 [9]

Метод конечных 
разностей

Аналитическое 
решение по [6]

погреш- 
ность εΔP1

, %
Θ

max
, °C

ΔP1 при 
t = ∞, кВт

Θ
max
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ΔP2 при

t = ∞, кВт
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100 1725 313,1 34,371 313,1 222,3 335,99 231,3 4,05



Э
Н

ЕР
ГЕ

ТИ
К

А
  И

  Э
Л

ЕК
ТР

О
ТЕ

Х
Н

И
К

А
О

М
С

К
И

Й
 Н

А
У

Ч
Н

Ы
Й

 В
ЕС

ТН
И

К
 №

 4
 (

18
8)

 2
02

3

98

передачи на основе квадратичной модели теплообмена // Ди-

намика систем, механизмов и машин. 2016. № 2. С. 60–67. 

EDN: XBFJKL.

4.  Петрова Е. В., Гиршин С. С., Ляшков А. А. [и др.]. Ана-

литическое решение уравнения теплового баланса провода 

воздушной линии в условиях вынужденной конвекции // 

Современные проблемы науки и образования. 2015. № 1–1.  

С. 218.

5.  Girshin S. S., Goryunov V. N., Kuznetsov Е. А. [et al.]. 

Comparative analysis of insulation-covered and bare conductors of 

overhead lines with variation of load currents considering weather 

conditions // Dynamics of Systems, Mechanisms and Machines 

(Dynamics). 2016. Р. 1–6. DOI: 10.1109/Dynamics.2016.7819012.

6.  Гиршин С. С., Горюнов В. Н., Бигун А. Я. Расчет неста-

ционарных температурных режимов воздушных линий элек-

тропередачи с учетом нелинейности процессов теплообме- 

на // Современные проблемы науки и образования. 2014. № 5.  

С. 287. EDN: SZVMIP.

7.  Bigun A. Y., Girshin S. S., Goryunov V. N. [et al.]. 

Assessment of climatic factors influence on the time to reach 

maximum wire temperature of overhead power lines // 

Przeglad Elektrotechniczny. 2020. № 96 (8). P. 39–42. DOI: 

10.15199/48.2020.08.08.

8.  Bhattarai B. P., Gentle J. P., McJunkin T. [et al.]. 

Improvement of transmission line ampacity utilization by weather-

based dynamic line rating // IEEE Transactions on Power Delivery. 

2018. № 33 (4). P. 1853–1863. DOI:10.1109/TPWRD.2018.2798411.

9.  Троценко В. М., Гиршин С. С., Петрова Е. В. [и др.]. 

Математическая модель теплового режима воздушной ли-

нии электропередачи с учетом изменения температуры по 

длине // iPolytech Journal. 2022. № 26 (3). С. 519–531. DOI: 

10.21285/1814-3520-2022-3-519-531.

10.  Самарский А. А. Теория разностных схем. Москва: 

Наука, 1977. 656 с. ISBN 5-02-014576-9. 

ТРОЦЕНКО Владислав Михайлович, старший пре-
подаватель кафедры «Электроснабжение промыш-
ленных предприятий» Омского государственного 
технического университета, г. Омск.
SPIN-код: 3958-5882 
AuthorID (РИНЦ): 889516
ORCID: 0000-0002-4250-371X
AuthorID (SCOPUS): 57210208434
Адрес для переписки: troch_93@mail.ru

Для цитирования

Троценко В. М. Анализ температуры и сравнение потерь 

активной мощности в нестационарном и стационарном тепло-

вом режиме воздушных линий электропередачи // Омский на-

учный вестник. 2023. № 4 (188). С. 93–99. DOI: 10.25206/1813-

8225-2023-188-93-99.

Статья поступила в редакцию 15.05.2023 г.
© В. М. Троценко

UDC 621.315
DOI: 10.25206/1813-8225-2023-188-93-99 
EDN: WIGOVE

V. M. TROTSENKO

Omsk State 
Technical University, 

Omsk, Russia

TEMPERATURE ANALYSIS 
AND COMPARISON OF ACTIVE 
POWER LOSSES IN NON-STATIONARY 
AND STATIONARY THERMAL 
CONDITIONS OF OVERHEAD 
POWER LINES
The article considers the temperature distribution with increased currents in the non-
stationary thermal regime of overhead power lines. The temperature distribution 
along the length of the line for wires of AC-240/32 and G(Z)TACSR 240 grades is 
constructed. Temperature dependences on time are plotted. The practical value of 
the mathematical model considered in the article lies in determining the maximum 
temperatures of overhead lines of different sections in normal or post-emergency 
wire mode. A comparative analysis of active power losses in a stationary thermal 
regime is carried out with and without taking into account axial heat transfer. The 
comparison showed that taking into account the axial heat transfer refines the 
active power losses, which allows introducing measures to reduce these losses with 
greater accuracy.

Keywords: power loss, bare wire, non-stationary thermal regime, stationary thermal 
regime, wire temperature, heat equation, axial heat transfer, finite difference 
method.
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