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ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ 
ГРАДИЕНТА МАГНИТНОГО ПОЛЯ 
ОТ ПАРАМЕТРОВ 
УПРОЧНЕННОГО СЛОЯ СТАЛИ 
ПРИ ИМПУЛЬСНОМ 
МАГНИТНОМ МЕТОДЕ 
НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ
Дается оценка влияния параметров контролируемой детали магнитным мето-
дом неразрушающего контроля на градиент напряженности магнитного поля 
измерительного преобразователя. Приведена упрощенная конструкция им-
пульсного градиентометрического преобразователя, указаны его параметры 
для проведения экспериментов. Рассмотрена математическая модель расчета 
выходного сигнала феррозонда градиентометра, применяемая для получения 
выходных данных. Исследованы зависимости градиента напряженности маг-
нитного поля от расстояния между датчиком и плоскостью контролируемой 
детали, от коэрцитивной силы и толщины упрочненного слоя, а также от тол-
щины контролируемой детали. Получены выводы на основании проведенного 
эксперимента.

Ключевые слова: градиент магнитного поля, напряженность, феррозонд, ви-
броударное упрочнение, неразрушающий контроль, коэрцитивная сила.

Введение. Импульсный магнитный метод кон-
троля механических свойств сталей [1–3] широко 
используется в практике неразрушающего контро-
ля как в нашей стране, так и за рубежом.

При импульсном магнитном методе изделие 
намагничивается аксиально симметричным им-
пульсным магнитным полем, направленным пер-
пендикулярно к испытуемой поверхности изделия, 
повышающим коэрцитивную силу изделия. Затем, 
после окончания релаксационных процессов, из-
меряется нормальная составляющая градиента поля 
остаточной намагниченности, по ее величине судят 
о значении контролируемого параметра. Для хо-
рошей повторяемости результатов измерений на-
магничивания производится серией импульсов или 
после намагничивания импульсным методом произ-
водится частичное размагничивание локальной об-
ласти. 

Также в промышленном производстве особое 
внимание уделяется основополагающим задачам  
по ресурсосбережению [4], которые необходимо 
соблюдать при использовании данного вида нераз-
рушающего контроля.

Упрощенная конструкция измерительного им-
пульсного преобразователя показана на рис. 1. 

Измерительный преобразователь представляет 
собой катушку круглого цилиндрического сечения 
2, расположенную над контролируемой деталью 1. 

Внутри катушки находятся два полуэлемента фер-
розонда 3, включенные встречно, то есть по гра-
диентометрической схеме. В обмотку катушки по-
даются импульсы тока амплитудой 0,2 ∙ 103–3 ∙ 103 А, 
которые создают у торца катушки поле амплитудой 
H = 0,1 ∙ 105–5 ∙ 105 А/м [5].

Длительность импульсов тока обычно равна 
100–2000 мкс. Подается несколько импульсов. На-
магниченный под катушкой участок создает поле 
рассеяния, градиент которого H измеряется фер-
розондом. Величина градиента поля зависит от ам-
плитуды, длительности и количества намагничива-
ющих импульсов, от толщины промагничиваемого 
слоя металла, от магнитной силы, а также от геоме-
трических параметров намагничивающей катушки 
[6]. 

Цель работы. Теоретическое и эксперименталь-
ное обоснование зависимости градиента напряжен-
ности магнитного поля от толщины упрочненного 
слоя и количество упрочнённых слоёв различной 
стали.

Модель расчета. Если линейные размеры детали 
в 3–4 раза превышают размеры катушки измери-
тельного преобразователя, то расчет выходного сиг-
нала можно осуществить по упрощённой методике 
[7, 8]. 

Рассчитывается напряженность магнитного 
поля, создаваемая катушкой с током, по формуле:
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 — магнитная проницаемость ферромагнетика;
M — число бесконечно тонких цилиндров, кото-

рые выбираются их условия 
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Определяется модуль напряженности магнитно-
го поля:

 .      (2)

Намагниченность определяется следующим об-
разом:

        ,                        (3)

где M
H
 рассчитывается по формуле [9]:

 ,           (4)

где 
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;


H
 — начальная восприимчивость (

H
 = tg);

M
s
 — намагниченность насыщения;

M
rs
 — остаточная намагниченность;

H
CS

 — коэрцитивная сила по предельной петле 
гистерезиса;

M
C
 — величина намагниченность, соответствую-

щая точке на кривой намагниченность при напря-
женности поля H

CS
;

H — напряженность поля, созданного катушкой.
В ферромагнитном пространстве выделяется об-

ласть, для которой соответствует H < H
R
 (H

R
 — на-

пряженность границы области Релея). Эта область 
разбивается на элементарные области, представля-
ющие собой кольца. Количество колец по коорди-
нате  – T, количество слоев по координате z – F.

Элементарный объем (ЭО) равен:
 

здесь R
vf
  — ширина v-го слоя, f-го кольца;

z
vf
 — толщина, ширина v-го слоя, f-го кольца 

(рис. 2). 
Рассчитываются составляющие вектора намаг-

ниченности для j-го ЭО.

                             (5)

Напряженность магнитного поля в сердечник H
ф
 

феррозонда рассчитывается с помощью теоремы о 
взаимности, которая записывается следующим об-
разом:

 .             (6)

В первом приближении формула (5) имеет вид:

 ,            (7)

где V
j
 — объем j-го ЭО;

N — количество ЭО;


С
 — относительная магнитная проницаемость 

сердечника.
Считается, что сердечники феррозонда имеют 

круглое сечение и расположены на оси катушки 
(рис. 3); магнитное поле имеет осевую симметрию, 
поэтому перепишется (7) так:

 .         (8)
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Рис. 1. Упрощенная конструкция
импульсного 

градиентометрического 
преобразователя
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Рис. 2. К расчету выходного сигнала 
феррозонда
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Магнитное поле, создаваемое сердечником фер-
розонда с обмоткой w, по которой протекает ток 
I, можно аппроксимировать полем двух разноимен-
ных, но одинаковых по численному значению маг-
нитных зарядов.

Напряженность этого поля равна

 	 				  
(9)

где a — радиус сердечника феррозонда;
2b — длина сердечника феррозонда.
Следовательно, в геометрических центрах сече-

ние колец ферромагнитного материала составляю-
щие вектора H будут иметь вид:

 

		  (10)

Таким образом, напряженность магнитного поля, 
наведенного намагниченной локальной областью, 
может быть рассчитана по следующей формуле:

 	

	 (11)

По формуле (11) рассчитывается напряжённость 
магнитного поля во втором полуэлементе ферро-
зонда, только d изменяется на 
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, где  
2h — расстояние между двумя полуэлементами 
феррозонда (рис. 1).

Выходная напряженность рассчитывается  
по следующей формуле:

U
m2

 = G(H
Ф1

 – H
Ф2

),               (12)

где G — функция преобразования феррозонда;
H

Ф1
, H

Ф2
 — напряженность в первом и во втором 

полуэлементах феррозонда.
Функция преобразования феррозонда представ-

ляется следующей формулой [10]:

 ,                    (13)

где S — площадь сечения сердечника феррозонда;
 — угловая частота возбуждения;
w

2
 — число витков выходной области ферро- 

зонда;


c
 — относительная магнитная проницаемость 

сердечника феррозонда.
Величина G для феррозондов, используе-

мых в градиентометрах с размерами сердечников 

1220,025  мм, находится в пределах 
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.

Результаты экспериментов. Для проведения 

эксперимента использовалась катушка без экрана 
высотой Z

K
 = 35 мм с внутренним радиусом 

1
 =  

=6 мм и внешним радиусом 
2
 = 12 мм. Число вит-

ков катушки W = 350, индуктивность катушки L =  
=0,6 мГн. В статье [5] используется большее коли-
чество витков, т.к. имеется различие в материале  
и сечении проводников. В обмотку катушки пода-
вался импульс тока, который создавал магнитную 
напряженность поля 3 ∙ 105 А. Длительность импуль-
са считается достаточной для полного намагничива-
ния металла.

На рис. 4 показана зависимость нормальной 
(рис. 4а) и касательной (рис. 4б) составляющих на-
пряженности поля от координаты r для различных 
значений амплитуды импульса намагничивающего 
поля для стали 40Х. 

Зависимость градиента напряженность магнит-
ного поля от расстояния между датчиком и плоско-
стью контролируемой детали показана на рис. 5. 

Максимальное значение градиента рассчитыва-
лось при различных значениях толщины упрочня-
емого слоя для стали 20 и 40Х, результаты расчета 
приведены в табл. 1.

Данные, приведенные в табл. 1, свидетельству-
ют о том, что имеется функциональная зависимость 
градиента напряженности магнитного поля рассея-
ния намагниченной локальной области от коэрци-
тивной силы и более слабая зависимость градиента 
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Рис. 3. Разбиение области под катушкой
 на элементарные объемы

Рис. 4. Зависимость нормальной и касательной 
составляющих напряженности намагниченной локальной 

области от координаты r

Рис. 5. Зависимость градиента 
вертикальной составляющей

магнитного поля 
от зазора между датчиком 

и плоскостью 
контролируемого изделия 

(40Х)
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поля от толщины упрочненного слоя (рис. 6).
На рис. 7 показана зависимость градиента на-

пряженности магнитного поля от количества вибро-
упрочненных слоев. Эта зависимость, кроме того 
что имеет существенную нелинейность, не обеспе-
чивает сколько-нибудь приемлемый коэффициент 
преобразования измерительного преобразователя. 
Поэтому при определении толщины виброупроч-
ненного слоя металла целесообразно дополнительно 

применять метод, использующий многочастотное 
намагничивание ферромагнитного материала. 

В табл. 2 приведены данные зависимости вели-
чины градиента напряженности магнитного поля 
от толщины контролируемой детали, на основе 
которых можно сделать вывод, что градиент вер-
тикальной составляющей напряженности магнит-
ного поля рассеяния намагниченной локальной об-
ласти при толщине детали до 8 мм сохраняют одни  

Таблица 1

Зависимость градиента магнитного поля намагниченной локальной области 
от коэрцитивной силы и толщины упрочненного слоя

Материал и его 
коэрцитивная сила 

до и после обработки

Толщина упрочненного слоя, мм

0,05 0,1 0,15 0,2 0,25 0,3

Градиент поля ∇H, А/м2

Сталь 20
Н

С min
 = 450 А/м2

Н
С max

 = 560 А/м2

2,4·104

3,0·104

2,8·104

3,5·104

3,1·104

3,9·104

3,4·104

4,2·104

3,5·104

4,4·104

3,5·104

4,4·104

Сталь 65Г
Н

С min
 = 810 А/м2

Н
С max

 = 930 А/м2

3,6·104

4,1·104

3,9·104

4,5·104

4,15·104

4,8·104

4,2·104

4,83·104

4,2·104

4,83·104

4,2·104

4,83·104

Сталь 30ХГСА
Н

С min
 = 840 А/м2

Н
С max

 = 950 А/м2

4,4·104

4,97·104

4,7·104

5,3·104

4,9·104

5,5·104

5,0·104

5,65·104

5,1·104

5,8·104

5,1·104

5,8·104

Сталь 40X
Н

С min
 = 1200 А/м2

Н
С max

 = 1700A/м2

6,8·104

9,6·104

7,3·104

10,2·104

7,5·104

10,5·104

7,6·104

10,6·104

7,7·104

10,8·104

7,8·104

11,0·104

Рис. 6. Зависимость градиента напряженности 
поля от коэрцитивной силы ферромагнитного 

материала и от количества упрочненных 
слоев (40Х)

Рис. 7. Зависимость градиента напряженности 
магнитного поля от количества упрочненных 

слоев (толщина одного слоя 0,05 мм)

Таблица 2

Зависимость величины градиента напряженности магнитного поля от толщины контролируемой детали

Амплитуда
импульса тока

Толщина детали, мм

20 15 10 8 6 4 2

Градиент поля ∇H, А/м2

Сталь 20
H

m
 = 105 A 2,6·104 2,6·104 2,7·104 2,7·104 2,8·104 2,8·104 4,4·104

Сталь 20
H

m
 = 3·105 A 3,3·104 3,3·104 3,3·104 3,5·104 3,7·104 3,9·104 4,8·104

Сталь 40Х
H

m
 = 105 A 6,7·104 6,7·104 6,7·104 6,8·104 6,9·104 7,4·104 7,6·104

Сталь 40X
H

m
 = 3·105 A 7,2·104 7,2·104 7,2·104 7,3·104 7,5·104 8,1·104 8,5·104
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и те же значения, а при толщине меньше 8 мм — 
начинают возрастать в 1,4…1,7 раза.

Выводы
1.  Установлено, что имеется функциональная 

зависимость градиента напряженности магнитного 
поля рассеяния намагниченной локальной области 
детали от коэрцитивной силы, после обработки ма-
териала возрастает коэрцитивная сила и градиент 
магнитного поля увеличивается в среднем на 25 %.

2.  При увеличении толщины упрочненного слоя 
материала возрастает градиент магнитного поля, 
значимые изменения наблюдаются при увеличении 
толщины упрочненного слоя с 0,05 мм до 0,1 мм, 
градиент поля возрастает в среднем на 15 %.

3.  Градиент вертикальной составляющей на-
пряженности магнитного поля рассеяния намаг-
ниченной локальной области при толщине детали  
от 8 мм до 20 мм сохраняет одни и те же значения, 
а при толщине меньше 8 мм — начинает возрастать  
в 1,4…1,7 раза.
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THE STUDY OF DEPENDENCE 
OF MAGNETIC FIELD GRADIENT 
ON PARAMETERS OF HARDENED STEEL 
LAYER​ AT PULSE MAGNETIC METHOD
OF NONDESTRUCTIVE TESTING
An assessment is made of the influence of the parameters of a controlled part by the 
magnetic method of non-destructive testing on the gradient of the magnetic field 
strength of the measuring transducer. A simplified design of a pulsed gradiometric 
transducer is presented, and its parameters for conducting experiments are 
indicated. A mathematical model for calculating the output signal of a gradiometer 
fluxgate used to obtain output data is considered. The dependences of the magnetic 
field intensity gradient on the distance between the sensor and the plane of the 
controlled part, on the coercive force and thickness of the hardened layer, as well 
as on the thickness of the controlled part are studied. Conclusions are drawn based 
of the experiment performed.

Keywords: magnetic field gradient, intensity, fluxgate, vibration-impact hardening, 
non-destructive testing, coercive force.
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