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ИССЛЕДОВАНИЕ ДИНАМИКИ 
МЕХАНИЧЕСКОЙ СИСТЕМЫ 
С НЕЛИНЕЙНЫМ 
УПРУГИМ ПОДВЕСОМ 
И СПЕКТРАЛЬНЫЙ АНАЛИЗ 
РЕЗУЛЬТАТОВ
Исследована динамика нелинейной механической системы при воздействии  
на нее кинематического возмущения. Исследуемая система виброизоляции 
объекта основана на применении принципа компенсации внешних возмуще- 
ний — введении в подвеску дополнительного упругого элемента с так называ-
емой отрицательной жесткостью. В результате система виброизоляции защи-
щаемого объекта описывается жесткой кубической силовой характеристикой. 
Обычно отыскивается приближенное решение на частоте внешнего возмуще-
ния, выполняя соответствующую гармоническую линеаризацию нелинейности. 
В результате получают, что собственная частота консервативной динамиче-
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, где k0 — собственная частота консерва-

тивной системы при отсутствии нелинейности. И далее исследователь работа-
ет, считая динамическую систему линейной. К сожалению, не всегда можно 
так полагать. Поэтому авторами было выполнено численное моделирование 
механической системы, описываемой уравнением Дуффинга при кинематиче-
ском возбуждении. 
Установлено, что в дорезонансной и резонансной областях общее решение 
должно состоять из трех составляющих: субгармоники порядка 1/3, основ-
ной гармоники и третьей гармоники. Отмечено, что в зарезонансной зоне 
важны только субгармоника порядка 1/3 и основная гармоника. Наиболее 
чувствительным параметром является ускорение защищаемого от вибрации 
объекта. Поэтому на спектральной мощности ускорения перемещения, кроме 
основной гармоники, различима и третья гармоника. Построенный численно 
модуль передаточной функции системы в абсолютном движении указывает на 
возможность скачка амплитуды, что ярко демонстрируется в лабораторных 
экспериментах. 
Показано, что при исследовании динамики даже простых нелинейных меха-
нических систем нужно использовать как приближенные аналитические, так 
и численные методы, но в сочетании со спектральным анализом, поскольку 
традиционные методы нелинейной механики не приспособлены к решению 
задач с учетом сравнительно большого числа составляющих гармоник, появ-
ляющихся вследствие нелинейности. 

Ключевые слова: механическая система, жесткая кубическая силовая харак-
теристика, уравнение Дуффинга, приближенные и аналитические методы, 
математическое моделирование, спектральная плотность (мощность), суб-
гармоники, третья гармоника, модуль передаточной функции, амплитудно-
частотная характеристика. 

Введение. Острая необходимость повышения 
производительности транспортных и технологиче-
ских машин различного назначения влечет за со-
бой повышение уровня вибрационных воздействий 

на их узлы, а также и на человека-оператора (ме-
ханика-водителя гусеничных маши, водителя боль-
шегрузного автомобиля, машиниста локомотива  
и др.). Высокие современные требования к качеству 



М
А

Ш
И

Н
О

С
ТР

О
ЕН

И
Е 

 
О

М
С

К
И

Й
 Н

А
У

Ч
Н

Ы
Й

 В
ЕС

ТН
И

К
 №

 3
  (

18
7)

 2
02

3

16

виброзащиты не во всех случаях удается обеспе-
чить путем применения типовых пассивных систем 
виброизоляции, основанных на применении упру-
гих элементов и гасителей колебаний, так как эти 
системы не всегда могут обеспечить желаемый вид 
переходного процесса, стабилизацию объекта в ши-
роком диапазоне частот и др.

Известно, что одним из эффективных спосо-
бов виброзащиты является создание систем, ос-
нованных на применении принципа компенсации 
внешних возмущений, приоритет открытия кото-
рого принадлежит Г. В. Щипанову [1]. Основной 
результат — условие независимости одной или не-
скольких координат объекта от внешних возмуще-
ний, строго доказан академиком Н. Н. Лузиным [2] 
и составляет фундамент теории инвариантности. 
Проблема инвариантности — это определение та-
ких структур и параметров динамических систем, 
при которых влияния произвольно изменяющихся 
внешних возмущений и собственных параметров 
систем на протекающие процессы могут быть ча-
стично или полностью компенсированы. Согласно 
принципу двухканальности, сформулированному 
академиком Б. Н. Петровым [3] и выражающему 
критерий физической реализуемости условий для 
достижения инвариантности выходной координаты 
системы, необходимо иметь, по крайней мере, два 
канала передачи воздействия между точкой при-
ложения силы и той точкой, относительно коорди-
наты которой достигается инвариантность. На ос-
нове принципа компенсации внешних возмущений 
можно обеспечить весьма малую, почти на порядок 
меньше, чем у типовой схемы виброизолятора, его 
динамическую жесткость, что позволяет обеспечить 
эффективную защиту объекта от воздействия ви-
брации и ударов [4–9].

Основная часть. Расчетная схема системы вибро-
защиты с компенсирующим устройством приведена 
на рис. 1. Здесь введены следующие обозначения:  
m — масса защищаемого объекта, с — жёсткость 
основного упругого элемента,  — коэффициент 
вязкого трения гасителя колебаний, q — обобщен-
ная координата, характеризующая перемещение 
груза,  = 

0
sint — кинематическое внешнее воз-

буждение, Q() = –a
1
+ a

3


3
 — динамическая ре-

акция компенсирующего устройства,  = z– — 
прогиб виброизолятора от положения статического 
равновесия. 

В процессе колебаний в результате сложения 
динамических реакций основного упругого элемен-
та и компенсирующего устройства формируется 
жёсткая кубическая силовая характеристика систе-
мы виброзащиты объекта. Таким образом, динами-
ка этой системы описывается уравнением Дуффин-
га [10, 11]. 

Как отмечено в работе [12], математическое мо-
делирование динамики и определение устойчиво-
сти в технических системах является актуальней-
шим направлением в научном и технологическом 
развитии любого государства, которое стремится 
занять лидирующие позиции в современном мире.  
Изучение предельных динамических режимов  
и устойчивости необходимо как в классических 
теоретических, так и в актуальных практических 
задачах. Поиск и анализ возникновения колеба-
тельных режимов требует разработки специальных 
аналитических и численных методов.

Общеизвестно, что при определённых условиях 
в решении нелинейного уравнения типа Дуффин-
га появляются и субгармоники — такие составля-
ющие, частота которых в целое число раз меньше 
частоты внешнего возмущения. В системе, описы-
ваемой уравнением Дуффинга, легче всего экспери-
ментально получить субгармонику, частота которой 
равна одной трети частоты воздействия. Субгармо-
ники других порядков могут быть также получены 
экспериментально и их появление предугадывается 
в результате теоретических исследований [13–17]. 
Эксперимент показывает, что для получения в си-
стеме субгармонического резонанса большое зна-
чение имеют условия запуска. При этом амплитуда 
и частота внешнего возбуждения должны находить-
ся в некоторых заданных пределах и сама система 
должна удовлетворять определённым начальным 
условиям. В связи с такой сильной зависимостью 
от начальных условий очевидно, что субгармони-
ческие колебания связаны с тем, что обычно по-
нимается под переходными процессами в линейной 
колебательной системе.

Колебательную систему, будь она линейной 
или нелинейной, можно заставить совершать ко-
лебания с помощью какого-нибудь начального им-
пульса. Поскольку в любой физической системе 
существуют потери энергии, то любые колебания, 
вызванные импульсом, рано или поздно затухают. 
В нелинейной системе колебания несинусоидальны  
и содержат высшие составляющие, частота которых 
в целое число раз больше или меньше основной ча-
стоты. Представляется возможным при некоторых 
условиях поддерживать установившиеся колебания 
системы, подводя энергию на частоте одной из этих 
гармоник. При этом, поскольку частота внешнего 
воздействия в целое число раз больше основной 
частоты колебаний системы, эта частота является 
субгармонической по отношению к частоте внеш-
него возбуждения. Таковы условия возникновения 
субгармонических колебаний.   

Будем выполнять численное моделирование 
нелинейной механической системы в сочетании  
со спектральным анализом, который, согласно ши-
роко известной монографии Дж. Бендата и А. Пир-
сола [18], может быть осуществлён разными мето-
дами, например, быстрым преобразованием Фурье 
(БПФ), имеющим тот недостаток, что частотные 
отношения между «пиковыми» частотами носят 
рациональный характер. Авторами был применён 
модернизированный метод спектрального анали-
за, избавленный от указанного выше недостатка.  
По результатам моделирования строилась корреля-
ционная функция, которая в дальнейшем на малых 
отрезках времени аппроксимировалась квадратным 
полиномом. Следовательно, можно утверждать, что 
интеграл, представляющий собой произведение 
корреляционной функции на  косинус от некоторой 
частоты, вычислялся точно. Итак, точность вычис-

Рис. 1. Расчетная схема системы 
виброзащиты человека-оператора
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ления спектрального интеграла определяется точно-
стью представления корреляционной функции.

 Запишем дифференциальное уравнение рас-
сматриваемой одностепенной механической систе-
мы с жёсткой кубической силовой характеристикой 
при кинематическом возбуждении в общепринятой 
форме Коши, которая больше всего подходит для 
численного интегрирования систем дифференци-
альных уравнений (здесь, в соответствии с рис. 1, 
Х

1
 = q; 2n = /m):

	  	 (1)

Чтобы избежать дифференциального уравнения 
с переменными коэффициентами, оно записано  
с учетом прогиба основного упругого элемента под-
вешивания. Перейти к абсолютным координатам 
достаточно просто, добавив к полученному числен-
ным методом результату величину внешнего воз-
мущения в данный момент времени. Численное 
интегрирование системы (1) выполнялось методом 
Рунге–Кутты четвёртого порядка, написанным 
на языке программирования в системе Mathcad 
с добавлением в выводной список правых частей 
дифференциальных уравнений, ибо стандартная 
функция данного математического пакета этим 
свойством не обладает.

На рис. 2 показан модуль передаточной функ-
ции системы в абсолютном измерении (чтобы по-
лучить этот рисунок ещё более идеальным для по-
строения модуля передаточной функции, нужно 
пройти с более мелким шагом по частоте; потому 
в данном случае использовались 37 точек). В пред-
ставленном рисунке по оси ординат откладывалась 
величина модуля передаточной функции, а по оси 
абсцисс — частота внешнего возбуждения. На нём 
хорошо виден скачок амплитуды колебаний систе-
мы с верхней ветви АЧХ на нижнюю ветвь. По-
нятно, что существует средняя ветвь АЧХ, которая, 
в принципе, не реализуется численными методами 
из-за неустойчивости. 

Наличие вязкого трения, как известно, скругля-
ет левую и среднюю ветви АЧХ и вследствие этого 
на ней существует точка, в которой производная  
от амплитуды колебания по частоте возмущения 
равна бесконечности. Действительно, модуль пере-
даточной функции с 11,015 мгновенно изменился  
до 1,812, т. е. уменьшился в шесть раз. Далее си-

стема двигается по нижней ветви передаточной 
функции, асимптотически приближаясь к нулевому 
значению.

Ниже на рис. 3 представлено абсолютное пере-
мещения защищаемого объекта. Сделаем замечание 
относительно используемого понятия «резонанс», 
так как для нелинейных систем оно не означает 
совпадение частоты внешнего возмущения с соб-
ственной частотой системы. Для нелинейной си-
стемы понятие резонанса указывает на равенство 
работ сил трения и возмущающих сил. Но в данном 
непринципиальном случае подразумевается класси-
ческое понятие.

На первый взгляд, кажется, что колебания про-
исходят с одной частотой, но спектральный анализ, 
выполненный ниже, покажет, что решение состо-
ит из трёх составляющих: основной, субгармоники 
порядка 1/3 и третьей гармоники. На рис. 3, рис. 
4 даны результаты оценивания абсолютного пере-
мещения и абсолютного ускорения защищаемого  
объекта при резонансе.

Здесь ещё раз отметим особенность подхода 
к вычислению, вообще говоря, осциллирующе-

го интеграла 
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, который в литературе, 

посвящённой этой проблеме, вычисляется чаще 
всего по приближённым формулам для «прямоу-
гольников» либо «трапеций». Здесь авторами был 
разработан алгоритм спектрального анализа, ис-
пользующий метод Филона и заключающийся  

Рис. 2. Модуль передаточной функции системы 
виброзащиты человека-оператора 
в абсолютном измерении (АЧХ)
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Рис. 3. Абсолютное перемещение 
защищаемого объекта, мм, 

при резонансе,   3,2519 рад/с

Рис. 4. Абсолютные ускорения объекта, в долях g
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                                        а)                                                                                         б)

Рис. 5. Спектральные мощности перемещения и ускорения защищаемого объекта в абсолютном движении 
на резонансной частоте  = 3,2519 рад/с: а — перемещение сиденья; б — ускорение сиденья

                                          а)                                                                                        б)

Рис. 6. Спектральные мощности перемещения и ускорения защищаемого объекта в абсолютном движении  
при частоте  = 0,4 рад/с (дорезонансная зона): а — перемещение сиденья; б — ускорение сиденья

                                          а)                                                                                         б)

Рис. 7. Спектральные мощности перемещения и ускорения защищаемого объекта в абсолютном движении при частоте 
  = 4 рад/с (резонансная зона): а — перемещение; б — ускорение 

                                          а)                                                                                           б)

Рис. 8. Спектральные мощности перемещения и ускорения защищаемого объекта в абсолютном движении далеко 
 в зарезонансной зоне при  = 11 рад/с (зарезонансная зона): а — перемещение; б — ускорение
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в том, что корреляционная функция аппроксимиро-
валась на малых отрезках времени полиномом вто-
рой степени, хотя степень полинома можно взять 
и выше. 

Следовательно, точность вычисления спектраль-
ной плотности теперь определяется точностью 
представления корреляционной функции, ибо соот-
ветствующие интегралы теперь вычисляются точно, 
так как они являются табличными. 

На рис. 5–8 показаны спектральные мощности 
перемещения и ускорения объекта в абсолютном 
движении. 

Относительное движение исследуемой механи-
ческой системы спектральному анализу не подвер-
галось. При этом по осям ординат откладывались 
перемещения (м) и ускорения (м/с2), а по оси аб-
сцисс — частота (рад/с). 

Выводы. Выполненный анализ результатов ма-
тематического моделирования поведения нелиней-
ной механической системы с жёсткой кубической 
силовой характеристикой позволяет заключить сле-
дующее:

1)  система виброзащиты объекта, построенная 
на основе принципа компенсации внешних воз-
мущений — введении в структурную схему ви-
броизоляции дополнительного упругого элемента, 
формирующего в процессе колебаний реакцию, 
направленную встречно динамической реакции ос-
новного упругого элемента, доставляет ей высокие 
динамические качества;  

2)  в дорезонансной и резонансной зонах общее 
решение состоит из субгармонического, основного 
колебания и третьей гармоники: на частоте возму-
щения  = 3,252 с–1 наблюдаются ещё составляю-
щие с частотами 3,58 и 10,73 и амплитудами 0,464 
и 0,031 м/с2; на частоте возмущения  = 0,4 рад/с  
получаем составляющие с частотами 0,44 с–1  
и 1,32 с–1 и амплитудами 0,00782 и 0,00125 м/с2;  
на частоте возмущения  = 4 с–1 обнаруживают-
ся частоты 4,4 с–1 и 13,2 с–1 с амплитудами 1,20  
и 0,1894 м/с2;

3)  в зарезонансной зоне при  = 10 с–1 еще 
присутствует составляющая с частотой 11 с–1 и ам-
плитудой 0,09238 м/с2;

4)  субгармоническую составляющую и третью 
гармонику на спектральных мощностях переме-
щений защищаемого от вибрации объекта обна-
ружить невозможно на фоне шума, создаваемого 
вследствие того, что анализируемые реализации 
хотя и имели 172718 точек, но всё же конечны,  
и эти составляющие чётко обнаруживаются при 
анализе ускорений защищаемого объекта. Следует 
также отметить, что амплитуда третьей гармони-
ки по сравнению с основной в 6,25 раза меньше  
в зарезонансной зоне, в 15,084 раза меньше в ре-
зонансной зоне при = 3,251914 с–1 и в 6,334 раза 
меньше в резонансной зоне при  = 4 с–1. Важно 
заметить, что в зарезонансной зоне третья гармо-
ника, вообще говоря, не обнаруживается, поэтому 
оценивать её в этом случае необязательно;

5)  наиболее чувствительным к частоте возмуще-
ния параметром динамической системы является 
ускорение, что является естественным, ибо оно есть 
произведение амплитуды составляющей перемеще-
ния системы на квадрат частоты.

Таким образом, использование как прибли-
жённых аналитических, так и численных методов 
в сочетании со спектральным анализом, позволяет 
более детально исследовать динамику нелинейных 
механических систем.
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DYNAMICS OF A MECHANICAL SYSTEM
WITH NONLINEAR ELASTIC SUSPENSION
AND SPECTRAL ANALYSIS 
OF THE RESULTS
The article considers the dynamics of a nonlinear mechanical system under the action 
of a kinematic perturbation on it. The object's vibration isolation system is described 
by a rigid cubic power characteristic and is based on compensation of external 
perturbations — the introduction of an additional elastic element with negative 
stiffness into the suspension. Numerical modeling of the system is performed, the 
results of which are analyzed by the method of spectral analysis, based on the 
representation of the correlation function on a small time interval by a square 
polynomial.
As a result of the analysis, it is found that in the pre-resonant and resonant regions, 
the general solution should consist of three components: a subharmonic of the order 
of 1/3, the fundamental harmonic, and the third harmonic. It is noted that only the 
subharmonic of the order of 1/3 and the fundamental harmonic are important in 
the resonant zone.
It is also noted that even simple nonlinear mechanical systems in the study of 
dynamics should use approximate analytical and numerical methods in combination 
with spectral analysis, since traditional methods of nonlinear mechanics are not 
adapted to solving problems taking into account a relatively large number of 
harmonic components that appear due to nonlinearity.

Keywords: mechanical system, rigid cubic force characteristic, Duffing equation, 
approximate analytical methods, mathematical modeling, spectral density (power), 
subharmonics, frequency response. 
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