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ЦИКЛИЧЕСКИЕ ПОВЕРХНОСТИ, 
СОПРОВОЖДАЮЩИЕ 
НЕЛИНЕЙЧАТЫЕ 
КВАДРИКИ ВРАЩЕНИЯ
В работе рассмотрено формообразование циклических поверхностей на ос-
нове нелинейного вращения, у которых осью вращения и образующей линией 
в общем случае служат пространственные гладкие кривые. В качестве инстру-
мента формообразования поверхностей нелинейного вращения используется 
известный в дифференциальной геометрии кривых линий метод сопровожда-
ющего трехгранника Френе. Геометрическая схема формообразования по-
верхностей основана на конструкции, в которую входят: криволинейная ось 
вращения и однопараметрическое множество ее нормальных плоскостей; об-
разующая линия, точки которой описывают в нормальных плоскостях круго-
вые траектории с центрами на криволинейной оси. Приведена математическая 
модель формообразования поверхности нелинейного вращения для общего 
случая задания оси вращения и образующей линии. На основе этой моде-
ли рассмотрены тестовые примеры формообразования поверхностей нели-
нейного вращения, представляющих собой циклические поверхности, каждая  
из которых сопровождает соответствующую нелинейчатую квадрику враще-
ния. В примерах формообразования исходная прямолинейная ось нелинейча-
той квадрики вращения и ее образующая линия — кривая второго порядка, 
функционально меняются местами: осью вращения становится кривая второ-
го порядка, а образующей линией — прямолинейная ось.
Полученное семейство поверхностей нелинейного вращения принадлежит из-
вестному в теории аналитических поверхностей классу «Нормальные цикли-
ческие поверхности». Оно дополняет этот класс и принципиально отличается  
по методу формообразования.

Ключевые слова: нелинейное вращение, циклические поверхности, нелинейча-
тые квадрики вращения, ось вращения, образующая линия.

Введение. В теории аналитических поверхностей 
известен класс нормальных циклических поверхно-
стей (НЦП) с геометрической схемой формообразо-
вания, включающей: плоскую или винтообразную 
линию центров окружностей, образующих поверх-
ность, и закон изменения радиусов этих окружно-
стей при переходе от одной нормальной плоскости 
линии центров к другой [1–3]. Однако полного ре-
шения задачи формообразования НЦП на основе 
пространственной линии центров в общем случае 
не дано. Известно несколько работ, в которых ис-
пользуются различные подходы к решению этой 
задачи. Так, например, в работах [4, 5] предложен 
подход с использованием аппарата конструктивно-
го моделирования циклических поверхностей на ос-
нове квазивращения относительно кривых второго 
порядка. Метод сопровождающего трехгранника 
в этом подходе не используется, обобщение кон-
структивного моделирования на случай простран-
ственной оси квазивращения не делается. В рабо-
тах [6, 7] рассматривается алгебраический подход 
для построения обобщенной поверхности вращения  

на основе функций, определяющих взаимосвязь ге-
ометрий линии центров и линии радиусов, форми-
рующих «круговую» траекторию движения точки  
в форме кривой второго порядка. В работах этого 
направления образования обобщенных поверхно-
стей вращения не выполняется анализ влияния гео-
метрии и взаимного расположения линии центров  
и линии радиусов на геометрию конструируемой 
поверхности. Циклические поверхности, в частно-
сти каналовые, широко используются на практике 
как динамические поверхности для транспортиров-
ки различных рабочих веществ: газов, жидкостей, 
сыпучих материалов. Как каналовые поверхности 
[8, 9] они также применяются в задачах оптималь-
ного размещения этих поверхностей в ограничен-
ных и сложноорганизованных средах [10, 11]. Они 
часто используются при формообразовании про-
странственных инженерных конструкций и соору-
жений [12], в архитектуре зданий и конструкциях 
технических изделий [13]. Очевидно, для дальней-
шего развития теории формообразования цикличе-
ских поверхностей и решения актуальных практи-
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ческих задач на основе их применения необходимы 
оригинальные подходы к разработке геометриче-
ских схем формообразования, приводящие к появ-
лению новых семейств циклических поверхностей 
с их аналитическим представлением.

Постановка задачи. Заданы две пространствен-
ные гладкие кривые q и g, из которых кривая  
q — ось вращения (рис. 1). Требуется построить 
поверхность, образованную вращением линии g 
относительно оси q. Также требуется показать  
на тестовых примерах существование циклических 
поверхностей, сопровождающих нелинейчатые ква-
дрики вращения. Очевидно, в решении этой задачи 
линия g будет служить образующей линией иско-
мой поверхности. В качестве инструмента решения 
будем использовать известный в дифференциаль-
ной геометрии кривых линий метод сопровождаю-
щего трехгранника Френе, достаточно обстоятельно 
изложенный в известных работах В. Бляшке [14],  
Э. Картана [15], Д. Н. Зейлигера [16] и др. геоме-
тров. Отметим также работы отечественных иссле-
дователей, успешно применивших этот метод в об-
ласти инженерной геометрии и ее многочисленных 
приложениях [8, 9, 17–21].

Геометрическая схема и математическая мо-
дель формообразования поверхности нелинейного 
вращения. Формообразование поверхности нели-
нейного вращения основано на вращении линии g 
относительно криволинейной оси q. При этом дви-
жении каждая точка M образующей g описывает 
круговую траекторию в нормальной плоскости (ν, β) 
кривой q. Исходя из того, что нормальные плоско-
сти оси q образуют нелинейный пучок плоскостей 
и образом прямой линии при ее вращении отно-
сительно q является кривая линия, будем называть 
образующийся объект поверхностью нелинейного 
вращения (ПНВ). При определённых условиях за-
дания формы и расположения кривых q и g между 
ними может быть установлено соответствие, при 
котором каждой точке образующей g будет соот-
ветствовать одна или множество (конечное или  
бесконечное) нормальных плоскостей оси q. 

Зададим кривые линии следующим образом: 
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 должно происходить  
в нормальной плоскости (ν, β)  оси вращения 
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проходящей через точку 
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. В этой точке суще-
ствует трехгранник Френе, образуемый ортами 
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 соответственно касательной τ, главной 
нормали ν и бинормали β, которые попарно опре-
деляют нормальную (ν, β), соприкасающуюся (τ, ν) 
и спрямляющую (τ, β) плоскости. Принадлежность 
точки 
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 к нормальной плоскости (ν, β) можно 
выразить следующим уравнением:

(1)

Из уравнения (1) следует зависимость l=F(t). 
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. Из 

гладкости функции F(t) следует гомеоморфное со-
ответствие числовых отрезков 
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, ко-
торое влечет такое же соответствие точек гладких 
кривых линий 
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. 
Из схемы на рис. 1 следует
       

                                          (2)

где 
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 — радиус-вектор точки образующей линии  
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 в локальной системе координат Qτνβ, A(t) — 
матрица перехода от неподвижной системы коорди-
нат Qxyz к локальной Qτνβ сопровождающего трех-
гранника. Параметрические уравнения круговой 
траектории точки M при 
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 имеют вид:
       

      (3)

где 
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Уравнение непрерывного семейства окружно-

стей — траекторий точек образующей 
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 в систе-
ме координат Qxyz  имеет вид:

       
                                     (4)
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Уравнение (4) описывает ПНВ с образующей 

линией 
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 и криволинейной осью вращения 
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Из уравнения (1) может быть получена также за-

висимость 
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. В этом случае  

в уравнении (4) произойдет смена параметров,  
и ПНВ будет описываться функцией 
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Результаты экспериментов. Результаты вычис-

лений в тестовых примерах получены в системе 
компьютерной алгебры Maple 18, и их визуализация 
представлена в табл. 1.

Пример 1. Сфера образована вращением обра-
зующей линии g (окружность) относительно прямо-
линейной оси q:

       

Уравнение сферы имеет вид: 

Рис. 1. Схема формообразования поверхности 
нелинейного вращения
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Требуется определить ПНВ, сопровождающую 
сферу. Для этих целей изменим функциональное 
назначение линий q и g. В качестве оси принима-
ем линию g, а в качестве образующей — линию 
q. На основании формулы (4) получаем уравнение 
ПНВ, которая представляет собой циклическую по-
верхность в форме закрытого тора и двух соответ-
ственных пучков концентрических окружностей  
в его осевой плоскости. Уравнение сопровождаю-
щей ПНВ имеет вид:

Пример 2. Задан эллипсоид вращения (вытяну-
тый сфероид)

    

                   
с осью вращения (большая ось эллипса) q и образу-
ющей линией (большим эллипсом) g: 

              

Tребуется определить сопровождающую ПНВ. 
Изменим функционально роли линий q и g. 

Используя формулу (4), получим уравнение ис-

комой ПНВ, которое представим, ввиду его гро-
моздкости, также лишь в обобщенном виде: 
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 Визуали-
зация полученной ПНВ представлена в таблице.  

Пример 3. Задан эллипсоид вращения (сплюсну-
тый сфероид)

                

с осью вращения (малая ось эллипса) q и образую-
щей линией (большим эллипсом) g:

Изменяя функциональные роли линий q и g  
и используя формулу (4), получим уравнение ПНВ, 
которое также можем представить лишь в обобщен-
ном виде: 
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  По-
лученная ПНВ представлена в табл 1.  

Пример 4. Для параболоида, заданного уравне-
нием

 

его ось вращения и образующая описываются соот-
ветственно уравнениями:

          

Таблица 1

Сопровождающие поверхности нелинейного вращения (СПНВ) для нелинейчатых квадрик вращения (НКВ)

        

НКВ

Сфера Эллипсоид Параболоид Гиперболоид

Вытянутый 
сфероид

Сплюснутый 
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Двуполостный
гиперболоид

Однополостный 
гиперболоид
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Определим для параболоида его сопровождаю-
щую ПНВ. Как и в предыдущих примерах, изменим 
вначале функциональные роли линий q и g, а затем, 
на основе формулы (4), определим уравнение ис-
комой ПНВ. Ввиду громоздкости уравнение также  
не приводится. Результат визуализации сопрово-
ждающей ПНВ приведен в таблице.

Пример 5. Поверхность двуполостного гипербо-
лоида вращения задана уравнением 

Его ось вращения (действительная ось гипербо-
лы) и образующая (гипербола) имеют соответствен-
но уравнения:

           

Определим ПНВ, соответствующую гиперболои-
ду. В результате вычислений на основе формулы (4) 
получим векторно-параметрическое уравнение, ко-
торое по причине громоздкости также не приводит-
ся. Визуализация полученной поверхности приве-
дена в таблице. Рассматривая в качестве исходной 
поверхность однополостного гиперболоида враще-
ния и выполняя соответствующие вычисления, по-
лучим сопровождающую его ПНВ, совпадающую  с 
ПНВ для двуполостного гиперболоида.

Обсуждение результатов. Анализ полученных 
циклических поверхностей, сопровождающих нели-
нейные квадрики вращения, показывает их принад-
лежность к классу алгебраических поверхностей 
четвертого порядка. Наличие двух соответственных 
усеченных пучков концентрических окружностей 
в примере 1 обусловлено геометрией и взаимным 
расположением образующей (отрезок прямой)  
и оси вращения (окружность) образуемой ПНВ.  
В примере 4 вычислениями установлено совпадение 
двух ПНВ, одна из которых получена вращением 
действительной оси гиперболы относительно самой 
гиперболы, а другая — мнимой оси относительно 
той же гиперболы. Для ПНВ, полученных в при-
мерах, характерна замкнутость этих поверхностей.  
В примерах 1 и 2 она имеет явный характер. В при-
мере 3 замыкание происходит по несобственной 
окружности, т.е по окружности с бесконечно уда-
ленным центром и бесконечно большого радиуса. 
В качестве такой окружности принимается несоб-
ственная прямая в плоскости оси вращения — пара-
болы. В примере 4 происходит двойное замыкание 

сопровождающей ПНВ — по несобственной окруж-
ности с бесконечно удаленным центром в направ-
лении одной асимптоты гиперболы, служащей осью 
вращения, и по несобственной окружности с бес-
конечно удаленным центром в направлении другой 
её асимптоты.

Заключение
1.  ПНВ, сопровождающие нелинейчатые ква-

дрики вращения, принадлежат известному в теории 
аналитических поверхностей классу нормальных 
циклических поверхностей и являются замкнуты-
ми поверхностями с замыканием некоторых из них  
в расширенном эвклидовом пространстве. 

2.  Предложенный подход к формообразованию 
нормальных циклических поверхностей, сопрово-
ждающих  нелинейчатые квадрики вращения, до-
полняет известную в инженерной геометрии клас-
сификацию циклических поверхностей. 

3.  Актуальными для последующих исследований 
могут быть задачи установления соответствия гео-
метрий поверхностей нелинейчатых квадрик вра-
щения и сопровождающих их ПНВ, а также количе-
ственной множественности ПНВ для нелинейчатой 
квадрики вращения.
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CYCLIC SURFACES ACCOMPANYING
NON-RULED QUADRICS OF ROTATION
The paper considers the shaping of cyclic surfaces based on nonlinear rotation, in 
which the axis of rotation and the generatrix in the general case are three-dimensional 
smooth curves. As a tool for shaping surfaces of non-linear rotation, the method of 
the accompanying Frenet trihedron, known in the differential geometry of curved 
lines, is used. The geometric scheme of surface shaping is based on a construction 
that includes: a curvilinear axis of rotation and a one-parameter set of its normal 
planes; a generatrix whose points describe in normal planes circular trajectories 
centered on a curvilinear axis. A mathematical model of shaping the surface of 
non-linear rotation for the general case of specifying the axis of rotation and the 
generatrix is given. On the basis of this model, test examples of the formation of 
surfaces of nonlinear rotation, which are cyclic surfaces, each of which accompanies 
the corresponding nonlinear quadric of rotation, are considered. In the examples 
of shaping, the original rectilinear axis of a non-linear quadric of revolution and its 
generating line, a second-order curve, are functionally interchanged: the second-
order curve becomes the rotation axis, and the rectilinear axis becomes the 
generatrix.
The resulting family of surfaces of non-linear rotation belongs to the well-known 
class in the theory of analytic surfaces "Normal cyclic surfaces". It complements this 
class and fundamentally differs in the method of shaping.

Keywords: non-linear rotation, cyclic surfaces, non-ruled quadrics of rotation, axis 
of rotation, generatrix.
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