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СИСТЕМА УПРАВЛЕНИЯ 
МИКРОКЛИМАТОМ 
ТЕПЛИЧНОГО КОМПЛЕКСА 
НА БАЗЕ НЕЧЁТКОЙ ЛОГИКИ 
Работа посвящена разработке и исследованию автоматической системы 
управления микроклиматом тепличного комплекса пятого поколения, кото-
рая построена на основе аппарата нечеткой логики и позволяет автоматизиро-
вать процессы управления с использованием последних разработок в этой об-
ласти. В ходе работы уточнено понятие «микроклимат тепличного комплекса» 
для региона зоны рискованного земледелия при выращивании крупноплодной 
земляники в закрытом грунте. 

Ключевые слова: микроклимат тепличного хозяйства, аппарат нечёткой логи-
ки, зашторивание, проветривание, капельный полив, досветка, автоматическое 
управление.

Введение. В современных условиях нестабиль-
ности рынка важно нарастить темпы развития 
собственных тепличных хозяйств, как мелких,  
так и средних, которые сегодня бурно развиваются 
[1]. Согласно [2] за последние пять лет инвестиции 
в данной отрасли сельского хозяйства превысили 
200 млрд рублей, было введено в эксплуатацию или 
начаты работы по строительству более 1,1 тыс. га 
теплиц. 

Всё это ведет к независимости от импортируе-
мой продукции сельхозназначения.

Тепличное хозяйство сегодня — это объект, ко-
торый имеет большие площади (от 1 Га до 100 Га),  
развитую инфраструктуру, отдельное электро-  
и энергопотребление, систему хранения и транс-
портировки готовой продукции. Кроме того, име-
ется целый комплекс для анализа получаемого 
продукта с точки зрения его товарного вида и на-
личия полезных микроэлементов и витаминов. Все 
важные для потребителя характеристики готового 
продукта обеспечиваются системой микроклимата, 
которая учитывает целый ряд параметров и под-
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держивает их на оптимальном уровне, а именно: 
освещённости, влажности воздуха и почвы, кислот-
ности почвы, температуры внутри помещения. Все 
это обязательно происходит в реальном времени 
при помощи современных систем управления. Важ-
но отметить, что одновременно с этим применяются 
на практике самые передовые технологии выращи-
вания того или иного продукта сельхозназначения, 
например, интенсивные методы выращивания [3], 
которые позволяют минимизировать временной ин-
тервал созревания и увеличить урожайность.

Для достижения наибольшего урожая с мини-
мальными энерго- и ресурсозатратами в теплич-
ном комплексе (ТК) используется современная ав-
томатическая система управления микроклиматом 
(АСУМ), которая позволяет значительно повысить 
урожайность выращиваемой сельхозкультуры [4].

Следует отметить, что использование современ-
ных технологий и автоматизации процессов кон-
троля за процессами, протекающими в тепличном 
комплексе, позволяют минимизировать затраты 
труда и привлекают высококвалифицированных 
молодых специалистов. Построенная по последнему 
слову техники и технологий современная теплица 
невозможна без продуманной и надежной системы 
управления.

Считаем, что вопрос исследования энергоэф-
фективности и надёжности микроклимата теплич-
ного комплекса является актуальным. 

При проектировании и строительстве ТК следу-
ет в первую очередь определить такие параметры, 
как климатические условия региона (место строи-
тельства), световую зону (III), вид и срок выращива-
ния сельхоз культуры, далее наличие или отсутствие 
скважины, высоковольтной линии электропередач 
и подъездных путей [5].

Краткая теоретическая часть. Считается, что 
для достижения максимального урожая любой агро-
культуры в закрытом грунте необходимо поддержи-
вать требуемые параметры микроклимата внутри 
ТК. Отметим, что разные авторы (Пешко М. С., 
Змиева К. А.) включают в понятие «микроклимат 
тепличного комплекса» свои параметры, влияющие 
на эффективность тепличного комплекса в целом. 
Поэтому уточним данное понятие и выделим основ-
ные параметры для создания оптимального микро-
климата при выращивании овощных и ягодных 
культур [6].

Каждый из рассматриваемых параметров явля-
ется неотъемлемой частью системы микроклимата 
теплицы. Остановимся кратко на каждом из них:

1.  Освещение — сложный комплекс мероприя-
тий для достижения требуемого уровня освещенно-
сти технологического помещения по выращиванию 
агрокультуры в разные моменты развития расте-
ния. Современные технологии в данной области 
позволяют создавать и поддерживать необходимые 
условия микроклимата при использовании фито-
ламп как основного источника света [7, 8].

2.  Система капельного полива — система пода-
чи и распределения воды с микроэлементами, кото-
рая обеспечивает питание корней растений [9, 10]. 
Растворение удобрений производится в отдельных 
баках в соответствии с химической совместимо-
стью удобрений. Полученный питательный раствор 
проходит очистку в системе на основе дискового 
фильтра.

3.  Содержание углекислого газа в воздухе ТК —  
это важная составляющая в процессе роста и раз-
вития агрокультуры [6]. Диоксид углерода не имеет 

цвета и запаха, но прекрасно фиксируется систе-
мой датчиков, установленных снаружи и внутри ТК.

4.  Температура — основной параметр, который 
изменяется как от внешних условий, так и вну-
тренних. На различных этапах развития растений 
температура должна корректироваться, мониторинг 
данного параметра должен производиться каждую 
минуту. 

5.  Кислотность почвы — зависит от состава по-
чвы, её насыщенности микроэлементами, влажно-
сти и температуры в техническом помещении те-
пличного хозяйства. 

6.  Влажность — также сложный показатель си-
стемы микроклимата, но оказывающий значитель-
ное влияние на развитие агрокультуры на всех 
этапах его развития. Чаще всего используют авто-
матические распылители, реже ручное разбрызги-
вание воды.

Применение АСУМ, согласно [11–13], эконо-
мит от 15 до 25 % тепла, увеличивая урожайность 
сельхозкультуры, значительно повышает культуру 
производства и выводит на новый качественный 
уровень условия труда. Использование АСУМ в ТК, 
позволяет обеспечивать высокую точность требуе-
мых параметров микроклимата с учетом внешних 
условий и решаемых задач в полном объёме. В ре-
жиме реального времени системами мониторинга 
и управления ТК отслеживаются следующие про-
цессы:

—  сбор метеорологических данных;
—  мониторинг и управление системой отопле-

ния теплиц;
—  управление форточной вентиляцией;
– управление рециркуляционными вентилято-

рами;
—  управление системами дозирования углекис-

лого газа, поддержание уровня концентрации угле-
кислого газа в объеме теплиц;

—  контроль и управление системой ассимиля-
ционного освещения;

—  управление горизонтальными шторными 
экранами.

Данные, которые получают с датчиков внутри 
и снаружи тепличного комплекса, в режиме реаль-
ного времени передаются на монитор компьютера, 
планшета или телефона работника, чтобы потом 
быть проанализированными [3, 6].

Крупноплодная земляника (садовая) относится 
к многолетним травянистым растениям, вес одной 
ягоды достигает от 35 до 100 г, подвержены не-
которым типичным болезням при выращивании  
в закрытом грунте, а именно: фитофтороз, ксантоз, 
мучнистая роса, гниль. 

В зависимости от сорта ягоды, его особенностей 
необходимо соответствующим образом настраивать 
АСУМ в ТК для получения максимальной урожай-
ности и минимальных затратах. Здесь необходима 
помощь агротехнолога, который настраивает и кор-
ректирует работу данной системы исходя из опыта 
работы.

Весь период жизни растения можно разделить 
на три цикла: 

I — посадка, 25 дней;
II — цветение, около 20 дней;
III — плодоношение.
Исходя из анализа вышеприведенных данных, 

можно сделать вывод, что наибольшее влияние  
на микроклимат тепличного комплекса оказывают 
следующие параметры: температура, влажность  
и содержание CO

2
.
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Приведены (табл. 1) практические рекоменда-
ции по поддержанию основных параметров микро-
климата для крупноплодной земляники.

Все выше обозначенные параметры для поддер-
жания оптимального микроклимата в тепличном 
комплексе легко контролируются при помощи си-
стемы приточно-вытяжной вентиляции, с предва-
рительной подготовкой воздуха (прогрев его при 
низкой температуре вне тепличного комплекса  
до приемлемого значения) и системы по регулиров-
ке влажности (рис. 1). Для этих целей используется 
промышленный кондиционер с высокой кратно-
стью воздухообмена, с системой контроля химиче-
ского состава воздуха (контроль уровня CO

2
) [9].

Математическая модель для тепличного ком-
плекса строится по принципу «чёрного ящика», т.к. 
присутствует ряд входных и выходных параметров, 
которые математически можно связать опосредо-
ванно. К выходным параметрам теплицы отнесём: 
температуру T

i
, уровень углекислого газа М

CO2
, от-

носительную влажность воздуха φ
i
, освещенность L

i
, 

которые зависят от управляющих и возмущающих 
воздействий и конфигурации тепличного комплек-
са [6]. 

Определим изменение температуры воздуха 
внутри тепличного комплекса (та часть, где проис-
ходит выращивание агрокультуры) T

i
 при помощи 

уравнения теплового баланса:

 ,          (1)

где ρ
а
 — плотность воздуха внутри тепличного ком-

плекса, кг∙м3;
С

а
 — удельная теплоёмкость воздуха внутри те-

пличного комплекса, Дж (кг∙К);
V — внутренний объем тепличного комплекса, 

м3;
T

i
 — температура воздуха внутри тепличного 

комплекса, °С;
Q

heat
 — тепловые поступления от системы обо-

грева, Вт;
Q

short
 — тепловые поступления от солнечного из-

лучения, Вт;
Q

conv.cond
 — тепловые потери, возникающие при 

конвекции и кондукции теплового потока, Вт;
Q

infiltt
 — инфильтрационные тепловые потери, Вт;

Q
long

 — тепловые потери, вызванные длинновол-
новым излучением, Вт.

Поступление тепла от солнечного излучения 
определим по формуле:

Q
short

 = α
c
τ
c
SI,                       (2)

где α
с
 — коэффициент поглощающей способности 

солнечной радиации;
τ
с
 — коэффициент пропускания покрытия;

S — площадь поверхности теплицы, м2;
I — солнечная радиация, Вт∙м2.
Подачу свежего воздуха из вне тепличного ком-

плекса определим по формуле:

R = VwS
c
.                         (3)

Далее запишем уравнение баланса влаги внутри 
теплицы:

 ,               (4)

где X
i
 — абсолютная влажность воздуха внутри те-

пличного комплекса, кг
Н2О

/кг
возд

;
X

а
 — абсолютная влажность воздуха снаружи 

тепличного комплекса, кг
Н2О

/кг
возд

;
G

for
 — расход пара внутри тепличного комплек-

са, который распыляется при помощи форсунок 
принудительно, кг

Н2О
/с.

Для связи абсолютной влажности воздуха с её 
относительным значением в тепличном комплексе 
воспользуемся следующим соотношением:

 ,                      (5)

где X
np
 — абсолютная влажность насыщенного 

пара, кг
Н2О

/кг
возд

. 
Работу нечеткого регулятора можно свести  

к базе правил, которая описывает основные особен-

Таблица 1 

Параметры для микроклимата

Цикл
T (температура) M (влажность) Q (CO

2
)

теория практика теория практика теория практика

I не менее 11 °С 13°С 90 % 68 % – 75 % 900 ppm 850 ppm

II 18°С – 22°С 22°С 75 % – 80 % 70 % – 77 % 800 ppm 810 ppm

III 20°С – 25°С 23°С 85 % – 90 % 75 % – 80 % 1100 ppm 980 ppm

Рис. 1. Объект управления
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ности работы данного регулятора и подкреплена 
теоретическими и практическими данными, полу-
ченными при выращивании крупноплодной земля-
ники. Данные правила задают условия выполнения 
определенных критериев, которые либо попадают 
в область корректных параметров, либо нет. Они 
ограничивают систему автоматического управле-
ния микроклиматом тепличного комплекса и зада-
ют корректные режимы её работы в зависимости  
от внешних факторов и этапов развития, выращи-
ваемой культуры [14, 15]. 

Работу систем подачи воздуха, зашторивания, 
полива и распыления влаги внутри тепличного ком-
плекса автоматизируем для наибольшей эффектив-
ности при помощи контроллера с интеллектуаль-
ным управлением, который описан базой правил 
для каждого отдельного параметра [12, 15–20].

Приведём (табл. 2) параметры микроклимата для 
производства ягодной продукции, а именно крупно-
плодной земляники. 

Обобщая теоретические (табл. 2) и практиче-
ские данные, сформулируем основные правила-
стратегии, которые отражают логику выбора темпе-
ратурного режима с учетом  температуры воздуха 
снаружи ТК в зимний период [11]:

1.  При температуре воздуха снаружи ТК ниже 
–17 ºС — придерживаемся номинальной темпера-
туры процесса выращивания крупноплодной земля-
ники.

2.  При температуре воздуха снаружи ТК ниже 
–33 ºС — придерживаемся немного пониженного 
значения температуры при выращивании крупно-
плодной земляники. 

3.  При значении температуры снаружи ТК око-
ло 0 ºС — придерживаемся немного повышенной 
температуры при выращивании крупноплодной 
земляники. 

Полученные три правила-стратегии соответ-
ствуют для контроллера следующим режимам ра-
боты по контуру температуры (в зимний период),  
а именно:

—  температура около –17 ºC (обычное состоя-
ние) — правило 1, 

—  температура около –33 ºC и ниже (холодно) —  
правило 2, 

—  температура около 0 ºC (тепло) — правило 3.
Температура в тепличном комплексе тесно связа-

на с влажностью, поэтому при повышенных значе-
ниях температуры снаружи комплекса необходимо 
понижать значение влажности, а при пониженных 
температурах — наоборот, поддерживать номи-
нальное значение последнего. С учётом коррекции 
влажности внутри тепличного комплекса управляю-
щие стратегии для микроконтроллера будут более 
детальными с поправкой на влажность внутри тех-
нологического помещения. Правила-стратегии 1 и 2 

поддерживают уровень влажности на номинальном 
уровне, при действии правила 3 устанавливаем но-
вый режим — «немного пониженный» [13].

Следующий параметр системы микроклимата, 
концентрация СО

2
, является важным фактором, 

но учитывается опосредованно. Он определяет  
во многом внешний вид продукции (влияет более 
чем на 30 %). Изменение концентрации СО

2
 как 

внутри тепличного комплекса, так и снаружи осу-
ществляется при помощи контроля системы венти-
ляции.

Добавленные в основные правила (1, 2, 3) усло-
вия по концентрации СО

2
 в тепличном комплексе 

привносят дополнительные условия в стратегии 
технологического режима работы контроллера. 
Кратко обозначим основные моменты:

—  концентрация СО
2
 устанавливается на отмет-

ке «пониженная», если температура окружающей 
среды составляет около 0 ºC (правило 3).

—  концентрация СО
2
 устанавливается на отмет-

ке «повышенная», если колебания температуры на-
ходятся на отметке около –30 ºC (правило 2).

—  концентрация СО
2
 устанавливается на отмет-

ке «номинальная» при наружной температуре окру-
жающей среды около –15 ºC (правило 1).

После учёта концентрации СО
2
 в наружном воз-

духе и влиянии влажности внутри тепличного ком-
плекса правила-стратегии для логического контрол-
лера примут следующий вид: 

1.  Если температура снаружи ТК «номиналь-
ная», а содержание СО

2
 снаружи ТК так же соот-

ветствует этому значению, то необходимо обеспе-
чить несколько повышенную температуру процесса 
выращивания крупноплодной земляники в сочета-
нии с немного пониженной влажностью воздуха  
и содержанием СО

2
 внутри ТК. 

2.  Если фиксируется значение температуры 
снаружи ТК, соответствующее отметке — «номи-
нальная температура», а содержание СО

2
 снаружи 

ТК как «повышенное», то требуется обеспечить не-
много повышенную температуру процесса выращи-
вания крупноплодной земляники, при этом немного 
понизить влажность воздуха и содержание углекис-
лого газа в внутри ТК. 

3.  Если зафиксирована датчиками температура 
снаружи ТК как «пониженная», а наружное содер-
жание СО

2
 имеет «номинальное» значение, то необ-

ходимо выдерживать номинальные параметры при 
выращивании крупноплодной земляники.

4.  Если датчиками температуры снаружи ТК за-
фиксировано значение, соответствующее понятию 
«пониженная температура», а содержание СО

2
 — 

«повышенное», то система контроля настраивает-
ся таким образом, чтобы параметры микроклимата 
при выращивании крупноплодной земляники для 
температуры и влажности имели «номинальные» 

Таблица 2 

Оптимальные технологические режимы выращивания крупноплодной земляники

Температура Влажность Содержание СО
2

Примечание

ºС % ppm

12–17 88–90 850–900 Оптимальные параметры

22 75–80 800 Оптимальные параметры

20–25 85–90 900–1100 Оптимальные параметры

18–23 75–85 – Общее требование к крупноплодной землянике
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значения, при этом следует «немного повысить» со-
держание диоксида углерода внутри ТК. 

5.  Если при фиксации системой датчиков сна-
ружи ТК температура оказывается в зоне «за-
ниженная», а наружное содержание углекислого 
газа, напротив, «номинальное», то система контро-
ля должна вывести параметры микроклимата ТК  

на следующие значения: «немного пониженную» 
температуру процесса выращивания, «номиналь-
ную» влажность и «повышенное» содержание ди-
оксида углерода внутри ТК. 

6.  Если температура снаружи ТК «заниженная», 
а наружное содержание диоксида углерода нахо-
дится на отметке — «повышенное», то контрол-

Рис. 2. Система управления: НР — нечёткий регулятор, 
БП — база правил Рис. 3. Нечёткий регулятор, реализованный в Matlab

Таблица 3 

Описание состояния параметров микроклимата и управления им в терминах нечеткого управления

Физическая величина Значение величины
Лингвистическая 

переменная

Термы 
лингвистической 

переменной
Характеристика термы

Температура воздуха
в технологическом 

помещении, ºС

12...18

Температура процесса

n пониженная

17...19 sn немного пониженная

21...23 z номинальная

22...24 sp немного повышенная

23...25 p повышенная

24...25 bp завышенная

Влажность воздуха, %

70...75

Влажность воздуха

n пониженная

75...80 sn немного пониженная

85...90 z номинальная

90...95 sp немного повышенная

Концентрация СО
2

в воздухе, ppm

400...600

Содержание 
углекислого газа

bn заниженное

400...700 n пониженное

700...800 sn немного пониженное

800...900 z номинальное

900...1000 sp немного повышенное

1000...1100 p повышенное

1100...1200 bp завышенное

1200...1300 bbp
значительно 
завышенное

Наружная температура, 
ºС

–35...–15
Наружная 

температура

bn заниженная

–30...–3 n пониженная

–15...–3 z номинальная

Наружная концентрация 
СО

2
, ppm

370...500 Наружная 
концентрация 

углекислого газа

z номинальная

500...390 p повышенная

Скорость открытия/
закрытия исполнительных 

механизмов, мм/с

–100...–10
–10...10
10...100

Упр. Т
Упр. М
Упр. Q

C1 закрывать
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лер выводит требуемые параметры микроклимата  
на следующие значения: «немного пониженное» 
значение температуры процесса выращивания 
крупноплодной земляники, «номинальной» влажно-
сти и «завышенным» содержанием диоксида угле-
рода внутри помещения ТК [14]. 

Как видно из описания, все правила-стратегии 
дополняют друг друга, иногда определяя основной 
режим работы при разных исходных данных сна-
ружи тепличного комплекса. Например, режим по-
вышенной экономии энергоресурсов при наружной 
температуре воздуха «–33 ºС» в зимний период  
в ущерб качеству продукции, устанавливает прави-
ло 5 и, наоборот, правило 1 — режим работы систем 
в экономически выгодных условиях при номиналь-
ной температуре наружного воздуха и номинальном 
значении влажности воздуха внутри ТК [10, 11]. 

Представлена система управления контроллера 
с нечёткими параметрами микроклимата теплич-
ного комплекса при выращивании крупноплодной 
земляники (рис. 2), разработанного на основе пра-
вил-стратегий, описанных выше. 

Структура контроллера формируется из блока 
правил, условий реализации различных режимов 
работы вентиляции, освещения, зашторивания, 
станции по выработке углекислого газа, анализе те-
кущих параметров с датчиков, выше обозначенных 
элементов, с выбором оптимального режима работы 
систем в ТК для достижения максимальной произ-
водительности.

Нечеткий регулятор определяет управляющие 
воздействия: по температуре — VT(t), влажности — 
VM(t) и содержанию углекислого газа внутри  
ТК — VQ(t) для соответствующих исполнительных 
механизмов в каналах управления T(t), М(t) и Q(t).  
В результате устанавливаются необходимые пара-
метры АСУМ, которые соответствуют условиям 
функционирования процесса выращивания крупно-
плодной земляники и поддерживаются автоматиче-
ски с одновременным мониторингом всех измене-
ний и условий функционирования ТК [6].

Нечеткий регулятор, реализованный в Mathlab 
(рис. 3), имеет пять входных и три выходных линг-
вистических переменных, они выбирают оптималь-
ный режим для каждого параметра по алгоритму 
Мамдани. В качестве функции принадлежности ис-
пользовали «треугольную» функцию, которая пред-
ставляет собой непрерывную линию. Аналитически 
такую функцию можно записать в виде выражения 
(6), а также представить графиком функции при-
надлежности (рис. 4) для температуры «Т» при ха-
рактеристике термы соответствующей «номиналь-
ной» (z, табл. 3).

 ,          (6)

где x — текущий параметр; а, b, c — некоторые 
числовые параметры, принимающие произвольные 
действительные значения, упорядоченные выраже-
нием: а ≤ b ≤ c. Здесь а, с — интервал, b — вершина 
треугольника (мода b). 

Входные лингвистические переменные запишем 
следующим образом: «Т» — температура процесса 
выращивания крупноплодной земляники; «M» — 
влажность; «Q» — концентрация углекислого газа  

в процессе выращивания крупноплодной земля-
ники; «Tout» — температура воздуха снаружи ТК; 
«Qout» — содержание углекислого газа в воздухе, 
поступающего в систему вентиляции. 

Выходами модели нечеткого регулятора яв-
ляются лингвистические переменные, которые 
обозначим так: «HeatValve» — управляющее воз-
действие по контуру отопления; «VaporValve» —
управляющее воздействие по контуру увлажнения; 
«AirValve» — управляющее воздействие по контуру 
проветривания. 

На основе правил-стратегий (шесть основных)  
и модели нечётного регулятора (рис. 4) была сфор-
мирована схема управления для системы микрокли-
мата в терминах. Она отражает полную работу кон-
троллера для исследуемого объекта (табл. 3).

Результаты экспериментов. К результатам ана-
лиза полученных данных можно отнести влияние 

Рис. 4. График функции 
принадлежности 

для температуры «Т»: 
а = 21 ºС, c = 23 ºС, b = 1

longiltcondconvshortheat
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Рис. 5. Зависимость температуры и концентрации 
углекислого газа

Рис. 6. Зависимость температуры внутри помещения
 и снаружи тепличного комплекса
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температуры и концентрации углекислого газа  
на управляющее воздействие по контуру проветри-
вания и температуры внутри помещения и снаружи 
тепличного комплекса по тому же контуру, которые 
приведены ниже (рис. 5, 6).

Для роста растения требуется оптимальное со-
держание углекислого газа СО

2
 на уровне 800 ppm 

и температуры внутри помещения 17 ºС (рис. 5), 
если эти значения превышены, то включается си-
стема принудительной вентиляции.

Зависимость температур, при понижении на-
ружной температуры, ниже –15 ºС, температура 
внутри тепличного комплекса возрастает (рис. 6), 
таким образом, включается принудительная систе-
ма вентиляции воздуха. 

Выводы. Разработанная математическая модель 
микроклимата теплицы для выращивания клубни-
ки (виктории) учитывает максимально возможное 
количество факторов, влияющих на формирование 
микроклимата тепличного комплекса. При матема-
тическом описании микроклимата использованы 
уравнения теплового баланса, баланса влажности 
внутреннего воздуха и баланса концентрации угле-
кислого воздуха в углекислом газе. Была разрабо-
тана база правил, которая состоит из 78 наимено-
ваний, на основании которых были построены 3D 
модели, наглядно отображающие работу систем: 
отопления, проветривания и увлажнения. Анализ 
полученных данных показал, что внутри теплично-
го комплекса, а именно в той части, где происходит 
выращивание крупноплодной земляники, можно 
уменьшить температуру на разных этапах её раз-
вития на 1 º С, что приведет к уменьшению затрат 
на обогрев.
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Paper is devoted to development and research of the fifth generation greenhouse 
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