
О
М

С
К

И
Й

 Н
А

У
Ч

Н
Ы

Й
 ВЕС

ТН
И

К
 №

 2 (190)   2024
Э

Л
ЕК

ТРО
Н

И
К

А
,  Ф

О
ТО

Н
И

К
А

,  П
РИ

Б
О

РО
С

ТРО
ЕН

И
Е  И

  С
ВЯ

ЗЬ

153

УДК 53.088.3,53.082.12: 620.173.2
DOI: 10.25206/1813-8225-2024-190-153-162
EDN: PFRQYJ

Е. С. КЛИМАНОВА

Омский государственный 
технический университет, 

г. Омск

ОПРЕДЕЛЕНИЕ МОДУЛЯ 
ДЕФОРМАЦИИ БИНАРНОГО 
КОМПОЗИТА С ПОМОЩЬЮ 
ИСКУССТВЕННОЙ НЕЙРОННОЙ СЕТИ
Действующие методики статистической обработки результатов определений 
характеристик основаны на гипотезе о нормальном характере их распреде-
ления. Результаты статистической обработки 153 лабораторных определений 
модуля деформации бинарного композита «песок-гранулы вспененного по-
листирола» эту гипотезу не подтвердили. Для решения возникшей проблемы 
было решено использовать искусственную нейронную сеть. Таким образом,  
в качестве объекта исследований был выбран модуль деформации бинарного 
композита. Применение искусственной нейронной сети для определения мо-
дуля деформации бинарного композита было выбрано в качестве предмета 
исследования. Цель выполненных исследований — определение модуля де-
формации бинарного композита с помощью искусственной нейронной сети. 
Основные задачи исследования — определение модуля деформации бинар-
ного композита с различным процентным содержанием гранул вспененно-
го полистирола, разработка искусственной нейронной сети и регрессионного 
уравнения для определения модуля деформации бинарного композита и по-
следующий сравнительный анализ результатов их использования. Результаты 
лабораторных испытаний образцов бинарного композита позволили обучить 
заранее разработанную искусственную нейронную сеть. По результатам те-
стирования обученной искусственной нейронной сетью было установлено, что 
при доверительной вероятности P = 95 % абсолютное значение относитель-
ной погрешности определения модуля деформации бинарного композита со-
ставило %8,11  
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, а значение коэффициента детерминации — R2 = 0,5641. 
В то же время, при использовании регрессионного уравнения 
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и R2 = 0,0857. Выполненные исследования подтвердили возможность и пре-
имущество использования искусственной нейронной сети для определения 
модуля деформации бинарного композита.

Ключевые слова: относительная погрешность определения характеристики, 
коэффициент детерминации, регрессионное уравнение, искусственная ней-
ронная сеть, песок, гранулы вспененного полистирола.

Введение. Результаты ранее выполненных лабо-
раторных исследований подтвердили возможность 
использования бинарного композита (БК) «песча-
ный грунт — гранулы вспененного полистирола 
(ГВП)» в качестве грунта основания резервуаров 
для уменьшения потерь тепла при хранении нефти 
в условиях Крайнего Севера [1, 2]. В то же вре-
мя очевидно, что добавки ГВП в грунт будут влиять  
на деформационные свойства БК, что важно для 
обеспечения устойчивости объектов технологи-
ческой инфраструктуры нефтегазовой отрасли  
в процессе их строительства и последующей экс-
плуатации. Необходимо отметить и тот факт, что  
в соответствии с действующими нормативными до-
кументами основания зданий и сооружений «сле-
дует проверять по деформациям во всех случаях» 
[3, с. 14]. Таким образом, изучение влияния доба-
вок ГВП на модуль деформации E, относящийся  
к основным характеристикам механических свойств 
грунтов, определяющих их деформации [4], пред-
ставляет собой актуальную задачу.

В настоящее время существуют различные ме-
тодики полевых [5–7] и лабораторных [8–10] 
определений модуля деформации E грунта, а также 
последующей статистической обработки получен-
ных в ходе исследований результатов [11]. Порядок  
и объём таких исследований определяется в соот-
ветствии с планом эксперимента [12, 13] и требо-
ваниями действующих нормативных документов [3,  
с. 13]. Так, например, в соответствии с требовани-
ями [3, с. 24] при определении значения механи-
ческих характеристик грунта необходимо провести 
не менее шести измерений. В то же время коррект-
ная, с учётом необходимости определения закона 
распределения результатов частных определений 
характеристик, статистическая обработка данных 
при прямых многократных измерениях в соот-
ветствии с методикой [14] требует как минимум  
15 допущенных после исключения грубых погреш-
ностей результатов измерений. С учётом длительно-
сти определений, измеряемой, как правило, часами, 
сама процедура определения требуемых расчётных 
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характеристик механических свойств является про-
должительной по времени и затратной по привле-
каемым ресурсам.

Решение проблемы сокращения временных  
и материальных затрат при определении характе-
ристик механических свойств грунта видится в ис-
пользовании современных достижений в области 
информационных технологий. Современный уро-
вень развития вычислительной техники, не только 
аппаратное, но и программное обеспечение, откры-
вает новые возможности в использовании совре-
менных достижений в IT-технологии в прикладных 
отраслях человеческой деятельности. Одно из таких 
направлений — это определение характеристик 
свойств материалов с привлечением современных 
методов и приёмов. Так, например, в своей работе 
[15] авторы сообщают о достижении 6 % расхож-
дения между данными экспериментальных иссле-
дований и данными механического и термического 
моделирования образцов с помощью программно-
го обеспечения ABAQUS. Особый интерес пред-
ставляет исследование [16], в котором авторы для 
определения характеристик прочностных свойств 
грунта использовали искусственную нейронную 
сеть (ИНС). I. V. Ofrikhter и др. сообщают об умень-
шении с 50,43 % до 15,33 % величины средней абсо-
лютной ошибки определения удельного сцепления 
глинистого грунта и его угла внутреннего трения 
с помощью ИНС по сравнению с регрессион-
ным уравнением (РУ), полученным в соответствии  
с действующими методиками планирования экс-
перимента [12, 13]. К аналогичному заключению  
о преимуществах использования ИНС в сравне-
нии с традиционными методами, использующи-
ми РУ, пришли D. Angshuman и др., исследуя мо-
дуль сдвига и избыточное давление поровой воды  
в четвертичном аллювиальном песке средней плот- 
ности [17].

Постановка задачи исследования. Объектом 
исследований была выбрана деформационная ха-
рактеристика — модуль деформации E БК (песча-
ного грунта с добавками ГВП). Применение ИНС 
для определения модуля деформации E БК было 
выбрано в качестве предмета исследования. Цель 
выполненных исследований — определение модуля 
деформации E БК с помощью ИНС. Для достиже-
ния поставленной цели были выполнены следую-
щие задачи:

1)  проведены лабораторные исследования  
по определению модуля деформации E БК с различ-
ным процентным содержанием ГВП;

2)  разработаны ИНС и РУ для определения мо-
дуля деформации E БК;

3)  выполнен сравнительный анализ использова-
ния ИНС и РУ для определения модуля деформации 
E БК.

Лабораторные исследования. В соответствии  
с поставленными задачами на начальном этапе ис-
следований в лабораторных условиях были выпол-
нены работы по определению модуля деформации 
E БК с содержанием ГВП от 0 % до 40 %. В соответ-
ствии с используемой на практике методикой [12, 
13] был разработан план проведения исследований 
по определению модуля деформации E БК. В со-
ответствии с планом эксперимента модуль дефор-
мации Е (МПа) БК является зависимым, искомым 
параметром. В качестве независимых факторов 
влияния были выбраны: эквивалентный диаметр ча-
стиц грунта d

э
 (мм), влажность БК w (д.е.), объёмная 

доля ГВП в БК φ
ГВП

 (д.е.), начальная плотность БК ρ
н
 

(г/см3). В табл. 1 представлены уровни и интервалы 
варьирования только для трёх независимых факто-
ров (d

э
, w, φ

ГВП
), поскольку для начальной плотности 

БК ρ
н
 определение уровней и интервала варьиро-

Таблица 1

Уровни и интервалы варьирования факторов влияния

Факторы влияния Нижний уровень Верхний уровень Основной уровень
Интервал 

варьирования

d
э
, мм 0,080 0,409 0,245 0,165

w, д.е. 0,03 0,15 0,09 0,06

φ
ГВП

 (Участок I), д.е. 0,00 0,10 0,05 0,05

φ
ГВП

 (Участок II), д.е. 0,10 0,40 0,25 0,15

Рис. 1. Автоматизированный 
испытательный комплекс «АСИС»: 

a) одометр с образцом бинарного композита; 
б) нагружающее устройство (компрессионный прибор)

Рис. 2. Программа циклических компрессионных 
испытаний образцов БК
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вания на практике не представлялось возможным. 
Причём использование двух диапазонов (участок I 
и участок II) для фактора φ

ГВП
 было обусловлено ре-

зультатами ранее выполненных исследований [18].
Компрессионные испытания образцов БК про-

водились на автоматизированном испытательном 
комплексе «АСИС» (рис. 1) в соответствии с дей-
ствующей методикой [9].

На рис. 2 представлена программа циклических 
испытаний, включающая пять этапов компрессион-
ных нагружений образцов БК до величины 180 кПа.

Выбор максимальной величины вертикального 
нагружения обусловлен фактическим давлением  
на грунт основания вертикального стального резер-
вуара ёмкостью 50000 м3 для хранения нефти и не-
фтепродуктов при проведении его гидравлических 
испытаний.

На рис. 3 представлены образцы БК с различ-
ным содержанием ГВП диаметром 2–4 мм. В ка-
честве основы БК был использован песок средней 
крупности.

В ходе компрессионных испытаний для каждого 
независимого фактора и его уровней было исследо-
вано не менее 12 образцов образца БК с различным 
содержанием ГВП. Всего в исследованиях было ис-
пользовано 153 образца БК.

Искусственная нейронная сеть. Для работы  
с результатами лабораторных исследований с по-
мощью алгоритмического языка Python была раз-
работана ИНС [19]. На рис. 4 представлена струк-
тура разработанной ИНС, состоящая из пяти слоёв: 
одного входного, одного выходного и трёх скрытых, 
включающих 64 нейрона каждый. При этом вход-
ной слой содержит 5 нейронов по числу учитыва-
емых факторов: эквивалентный диаметр частиц 

грунта d
э
, влажность БК w, объёмная доля ГВП в БК 

φ
ГВП

, начальная плотность БК ρ
н
, вертикальная на-

грузка σ
n
. Выходной слой содержит один нейрон —  

модуль деформации E БК.
Непосредственно сам алгоритм обучения и прак-

тического использования обученной ИНС представ-
лен на рис. 5. Поскольку процесс обучения ИНС 
носит стохастический характер, в ходе апробации 
ИНС была выполнена серия из 100 последователь-
ных обучений и последующих тестирований с раз-
личными наборами обучающих исходных данных.

Для оценки качества обученной ИНС были ис-
пользованы: абсолютная величина среднего зна-
чения относительной погрешности 
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 (далее — 
погрешность) и коэффициент детерминации R2 

определения модуля деформации Е БК с помощью 
обученной ИНС.

Результаты исследований. На рис. 6 представ-
лена гистограмма распределения значений моду-
ля деформации Е БК. В соответствии с действую-
щими методиками при статистической обработке 
результатов прямых многократных определений 
модуля деформации E БК принимается гипотеза  
о принадлежности результатов измерений нормаль-
ному распределению [14]. Для проверки гипотезы  
о нормальном характере распределения вероят-
ностей полученных данных были использованы: 
критерий согласия Пирсона (кси-квадрат) [20], Кол-
могорова–Смирнова [21] и критерий Андерсона–
Дарлинга [22].

При выборе тестов учитывались следующие 
факторы: размер выборки (в исследовании —  
n = 18360), уровень значимости при принятии ну-
левой гипотезы (α = 0,05), а также вероятность 
возникновения мультимодальности или «хвостов» 

Рис. 3. Изготовление образцов
 бинарного композита с составом: 
а) dэ = 0,409 мм; w = 0,03; φ

ГВП
 = 0,1

б) dэ = 0,08 мм; w = 0,03; φ
ГВП

 = 0,4

Рис. 4. Структура разработанной ИНС
Рис. 5. Алгоритм обучения и практического 

использования ИНС
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в приведенной выборке. По результатам проверки 
гипотеза о нормальном характере распределения 
полученных данных всеми тестами была отверг- 
нута.

Таким образом, опровержение гипотезы ста-
вит под сомнение корректность дальнейшего ис-
пользования действующих методик статистической 
обработки результатов лабораторных испытаний. 
Поскольку нормативными документами не преду- 
смотрены иные варианты статистической обработ-
ки данных, вопрос о разработке РУ для описания 
влияния независимых параметров на целевой пара-
метр остаётся открытым.

Для решения выявленной проблемы было пред-
ложено использовать ИНС. В соответствии с ал-
горитмом (рис. 5) для определения модуля дефор-
мации требуется предварительно обученная ИНС. 
Поскольку результаты обучения ИНС носят сто-
хастический характер, возникает необходимость 
статистической оценки данного вероятностного 
процесса. Для этого процесс обучения ИНС и по-
следующего её тестирования был выполнен много-
кратно. На рис. 7 представлен пример тестирования 

обученной ИНС. Величина относительной погреш-
ности δ по Test-массиву определяется уравнением 
вида

 ,                  (1)

где E
ИНС

 — модуль деформации E БК, определённый 
с помощью ИНС, МПа; E

Test
 — модуль деформации 

E БК из Test-массива, определённый по результатам 
компрессионных испытаний в лабораторных усло-
виях, МПа.

На рис. 8 представлены результаты оценки 
многократного обучения ИНС и последующего её 
тестирования. Как видно из представленных дан-
ных, минимальное значение погрешности опреде-
ления модуля деформации E БК равно 
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В свою очередь, максимальное значение погрешно-
сти определения модуля деформации E БК равно 
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. При этом минимальная величина ко-
эффициента детерминации определения модуля 
деформации E БК равна R2

min
 = 0,4887, а его мак-

симальное значение равно R2
max

 = 0,9083. При дове-
рительной вероятности P = 95 % погрешность равна 
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, а значение коэффициента детерминации 
обученной ИНС — R2 = 0,5641, что характеризует 
модель как удовлетворительную [23].

В свою очередь, при доверительной вероятности 
P = 99 % погрешность составила 
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, а коэф-
фициент детерминации — R2 = 0,4694.

В табл. 2 представлены характеристики гене-
ральной совокупности выборки данных погрешно-
сти 
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 и коэффициента детерминации R2 обученной 
ИНС. При этом было установлено, что распределе-
ние непосредственно самой погрешности определе-
ния модуля деформации E БК носит нормальный 
характер.

Поскольку в ходе исследования была установ-
лена несостоятельность методик статистической 
обработки результатов лабораторных испытаний 
действующих нормативных документов, в качестве 
зависимости модуля деформации E от объёмной 
доли ГВП в БК φ

ГВП
 для участков I и II [18] были 

предложены эмпирические уравнения. Для участка 
I предложено уравнение вида

E = 18,974 + 1,907 ∙ X
1
 – 2,474 ∙ X

2
,         (2)

Рис. 6. Гистограмма распределения значений модуля 
деформации Е БК

Рис. 7. Пример тестирования обученной ИНС
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где E — модуль деформации БК, МПа; X
1
 — эк-

вивалентный диаметр частиц песчаного грунта, мм;  
X

2 
— объемная доля ГВП в БК, д.е.
В свою очередь, для участка II предложено урав-

нение вида

E = 13,963 – 5,198 ∙ X
2
.              (3)

На рис. 9 представлены примеры тестирова-
ния обученной ИНС и регрессионных уравнений  
на одинаковых массивах данных.

На рис. 10 представлены результаты оценки 
определения модуля деформации E БК с помощью 
РУ (2) и (3).

Как видно из представленных на рис. 10 дан-
ных, минимальное значение погрешности определе-
ния модуля деформации E БК равно 
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.  
В свою очередь, максимальное значение погрешно-
сти определения модуля деформации E БК равно 
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. При этом минимальная величина ко-
эффициента детерминации определения модуля 
деформации E БК равна R2

min
 = 0,0817, а его мак-

симальное значение равно R2
max

 = 0,1829. При дове-
рительной вероятности P = 95 % погрешность равна  
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, а значение коэффициента детерминации 
РУ — R2 = 0,0857, что характеризует модель как 
неудовлетворительную. В свою очередь, при до-
верительной вероятности P = 99 % погрешность 
равнялась 
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, а коэффициент детерминации  
РУ — R2 = 0,0643. Очевидно, что неудовлетвори-
тельные величины статистических критериев точ-
ности, полученные при тестировании РУ, свиде-
тельствуют о её неприемлемой достоверности.

В табл. 3 представлены характеристики гене-
ральной совокупности выборки данных погрешно-
сти 
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 и коэффициента детерминации R2 определе-
ния с помощью РУ (2) и (3).

Как видно из данных, представленных в табл. 
2 и 3, выборки результатов тестирования обучен-
ной ИНС и РУ являются достаточно однородными, 
поскольку коэффициенты вариации С

v
 как для по-

грешности 
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, так и для коэффициента детермина-
ции R2 не превышают 0,33 [24]. Кроме того, было 
установлено, что при доверительной вероятности  

Рис. 8. Результаты тестирования обученной ИНС:
а) абсолютное значение относительной погрешности; 

б) коэффициент детерминации

Таблица 2

Характеристики генеральной совокупности выборки данных обученной ИНС

Название показателя Значение

Объем выборки, шт. 100

Критерий качества модели
(метрика)

абсолютное значение 
относительной погрешности δ , %

коэффициент детерминации 
R2, д.е.

Показатели среднего положения (центральной тенденции)

Среднеарифметическое значение 27,3 0,7535

Мода Мо 19,2 0,7271

Медиана Ме 27,0 0,7673

Показатели разнообразия признака (разброса, изменчивости)

Среднее квадратическое отклонение σ 7,8 0,0947

Дисперсия σ2 59,6 0,0089

Коэффициент вариации С
v

0,2845 0,1257

Показатели формы распределения

Коэффициент асимметрии A
s

0,2800 –0,6376

Коэффициент эксцесса E
x

–0,5889 –0,0559



Э
Л

ЕК
ТР

О
Н

И
К

А
,  

Ф
О

ТО
Н

И
К

А
,  

П
РИ

Б
О

РО
С

ТР
О

ЕН
И

Е 
 И

  С
ВЯ

ЗЬ
О

М
С

К
И

Й
 Н

А
У

Ч
Н

Ы
Й

 В
ЕС

ТН
И

К
 №

 2
 (

19
0)

 2
02

4

158

P = 95 % погрешность 

%8,11  

%1,133  

  

%100



Test

TestИНС

E

EE
 

 

%0,14
min

  

%5,49
max

  

%8,11  

%5,50  

%4,113
min

  

%8,135
max

  

%1,133  

%8,137  

 

 

 

 определения с помощью 
обученной ИНС в 11 раз меньше аналогичного пара-
метра РУ, а значение коэффициента детерминации 
R2 обученной ИНС в 6,6 раза больше, чем для разра-
ботанного РУ. В свою очередь, при доверительной 
вероятности P = 99 % погрешность 
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 определения 
с помощью обученной ИНС в 2,7 раза меньше, а 
значение коэффициента детерминации R2 обучен-
ной ИНС в 7,3 раза больше, чем аналогичные пара- 
метры РУ.

Обсуждение результатов исследований. Дей-
ствующие методики статистической обработки ре-
зультатов измерений основаны на гипотезе об их 
нормальном распределении. По результатам стати-
стической обработки лабораторных определений 
модуля деформации E 153-х образцов БК с раз-
личным процентным содержанием ГВП была опро-

вергнута гипотеза об их (результатов определений 
E) принадлежности нормальному распределению. 
Следствием отклонения гипотезы стала невозмож-
ность использования методик действующих норма-
тивных документов для корректной разработки РУ. 
Разработанная и обученная ИНС позволила успеш-
но разрешить проблему определения модуля дефор-
мации E БК по характеристикам его физических 
свойств: эквивалентному диаметру частиц грун-
та d

э
, влажности w, объёмной доли ГВП в БК φ

ГВП
  

и начальной плотности БК ρ
н
. Сравнительный ана-

лиз результатов тестирования обученной ИНС и РУ 
подтвердил корректность принятого решения. Тем 
не менее очевидно, что достигнутая удовлетвори-
тельная точность определения модуля деформации 
БК требует дальнейших исследований, направлен-
ных на её повышение.

Рис. 9. Примеры тестирования: а) обученная ИНС; б) регрессионные уравнения

Рис. 10. Результаты тестирования регрессионного уравнения (РУ):
а) абсолютное значение относительной погрешности; б) коэффициент детерминации 
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Заключение. Проведённые исследования под-
твердили возможность определения модуля де-
формации E образцов БК с помощью ИНС. При 
этом использование обученной ИНС для определе-
ния модуля деформации E образцов БК позволяет  
не только исключить необходимость проверки ги-
потезы о принадлежности результатов измерений 
нормальному распределению, но и повысить точ-
ность определения исследуемой характеристики.
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Таблица 3

Характеристики генеральной совокупности выборки данных регрессионного уравнения

Название показателя Значение

Объем выборки, шт. 100

Критерий качества модели
(метрика)

абсолютное значение 
относительной погрешности δ , %

коэффициент детерминации 
R2, д.е.

Показатели среднего положения (центральной тенденции)

Среднеарифметическое значение 123,7 0,1285

Мода Мо 120,0 0,1119

Медиана Ме 123,0 0,1246

Показатели разнообразия признака (разброса, изменчивости)

Среднее квадратическое отклонение σ 4,8 0,0214

Дисперсия σ2 22,1 4,58·10-4

Коэффициент вариации С
v

0,0282 0,1667

Показатели формы распределения

Коэффициент асимметрии A
s

0,0841 0,3294

Коэффициент эксцесса E
x

–0,4109 –0,4072
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DETERMINATION 
OF THE DEFORMATION MODULUS 
OF BINARY COMPOSITE
USING ARTIFICIAL NEURAL NETWORK
Using of existing methods of determining the characteristics of soils which are part 
of current regulatory documents and which are based on the hypothesis of normal 
character of distribution require considerable time and material costs. According 
to the results of conducted laboratory researches the hypothesis wasn’t confirmed. 
In the paper it proposes to use trained artificial neural network for determination 
of the deformation modulus of binary composite «sand — granules of expanded 
polystyrene». Thus, it has been proven efficiency proposing method using trained 
artificial neural network in compare classical regression equation for determination 
of the deformation modulus of the binary composite. With a confidence probability 
of P = 95 % the absolute value of the relative error is equal to 11,8 % the proposing 
learning artificial neural network in 11 times less than the absolute value of the 
relative error of classical regression equation. Also with a confidence probability of 
P = 95 % the coefficient of determination is equal to 0,5641 and in 6,6 times less 
than it of regression equation. Further research will be directed to the selection of 
the values of the parameters of the artificial neural network program for increase 
the accuracy of determining the deformation modulus of the binary composite. 

Keywords: relative error in determining the characteristic, coefficient of 
determination, regression equation, artificial neural network, sand, granules of 
expanded polystyrene.
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