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Вследствие растущего спроса на электроэнергию и износа существующей инфраструктуры, воз-

душные линии электропередачи во многих случаях вынужденно работают на пределе своих тепловых 
возможностей. Это стимулирует инженеров все чаще обращать внимание на учет погодных факто-
ров, влияющих на температуру проводников, используя соответствующие математические модели. 
Тем самым обеспечивается возможность оперативно реагировать на изменения в тепловом режиме 
проводников.

В данной статье на основе уравнений теплового баланса произведен вывод аналитических выраже-
ний для расчета температуры изолированных и неизолированных проводов воздушных линий электро-
передачи. Представленная математическая модель подтверждена сравнением с методом конечных 
элементов, реализованным в программном комплексе Ansys. Исследование также включало в себя 
комплексное изучение того, как температура окружающей среды, скорость ветра и атмосферное 
давление влияют на тепловое состояние проводника.
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INVESTIGATION OF THE ENVIRONMENTAL IMPACT 
ON THE CAPACITY OF OVERHEAD POWER LINES

V. A. Krivolapov, S. S. Girshin, E. V. Petrova,
V. A. Deev, V. M. Trotsenko, V. N. Goryunov, M. Yu. Nikolayev

Omsk State Technical University, Omsk, Russia

Due to the growing demand for electricity and the deterioration of existing infrastructure, overhead 
power lines in many cases are forced to operate at the limit of their thermal capabilities. This encourages 
engineers to increasingly pay attention to the consideration of weather factors affecting the temperature of 
conductors, using appropriate mathematical models. This makes it possible to quickly respond to changes in 
the thermal regime of the conductors.

In this article, based on the equations of thermal balance, analytical expressions are derived for calculating 
the temperature of insulated and non-insulated wires of overhead power lines. The presented mathematical 
model is confirmed by comparison with the finite element method implemented in the Ansys software 
package. The study also included a comprehensive study of how ambient temperature, wind speed and 
atmospheric pressure affect the thermal state of the conductor.

Keywords: active resistance, power losses, power transmission line, meteorological factors, temperature 
regime, insulation, finite element method, throughput capacity.
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Введение
Несмотря на то, что в мире до сих прожива-

ет приблизительно 750 млн человек без доступа 
к электричеству [1], мировой спрос на электро-
энергию неуклонно растет, что обусловлено таки-
ми факторами, как рост численности населения  
и благосостояния граждан, а также более активное 
применение различного электрооборудования в по-
вседневной жизни [2]. 

Согласно долгосрочному прогнозу [3], к 2042 г. 
потребление электроэнергии в энергосистемах Рос-
сийской Федерации достигнет 1449,72 млрд кВт ∙ ч., 
а пиковое потребление электроэнергии возрастет 
до 208,24 млн кВт ∙ч. Этот рост позволяет электро-
энергетической отрасли расширить свою роль в ка-
честве значимого поставщика энергетических услуг 
во всех секторах экономики, особенно в секторах 
строительства и транспорта [4].

В то же время этот рост окажет серьезное вли-
яние на существующую инфраструктуру электри-
ческих сетей, особенно учитывая высокий процент 
износа имеющегося оборудования в России [5]. 
Если данная проблема не будет решена своевремен-
но, она может стать серьезным препятствием для 
экономического роста Российской Федерации.  

В Распоряжении Правительства РФ от 09.06.2020 
№ 1523-р «Об утверждении Энергетической стра-
тегии Российской Федерации на период до 2035 го- 
да» [6] для решения этой задачи указывается на не-
обходимость сокращения потерь электроэнергии  
в электросетях до 7,3 % и обновления инфраструк-
туры электросетей.

Математическая модель
Повышение токовых нагрузок на воздушные 

линии электропередачи неизбежно приводит к по-
вышению температуры проводников, тем самым 
накладывая ограничения на пропускную способ-
ность линий. Для обеспечения надежной работы 
и безопасной эксплуатации проводов в различных 
условиях производители устанавливают конкрет-
ные рекомендации относительно верхних пределов 
рабочей температуры. Чтобы достичь максималь-
но возможной пропускной способности, оставаясь  
в пределах допустимых температур провода, необхо-
димо учитывать множество факторов. Сюда входят 
не только присущие самому проводнику свойства, 
такие как составляющие его материалы, площадь 
поперечного сечения и электрическое сопротивле-
ние, но и скорость ветра, атмосферное давление, 
солнечная радиация и температура окружающей 
среды. Старение проводников, расширение метал-
лов под воздействием тепла, быстрые колебания 
погодных условий и множество других влияющих 
факторов значительно усложняют математические 
модели, используемые для прогнозирования и ана-
лиза пропускной способности линий. В результате 
эти сложности вносят уровень неопределенности, 
который снижает точность моделей. 

Для оценки максимальных токовых нагрузок 
используются следующие математические модели: 
IEEE 738 [7], CIGRE 601 [8] и стандарт ОАО «ФСК 
ЕЭС» СТО 56947007-29.240.55.143-2013 [9].

Определение предельной пропускной способ-
ности может быть реализовано либо путем расчета 
длительно допустимого тока, либо непосредственно 
определением температуры проводника и контро-
лем этого значения ниже допустимого [10].

На территории Российской Федерации широкое 
распространение в сетях до 35 кВ получили прово-
да c изолирующим слоем [11]. Но перечисленные 
выше методы предназначены только для расчетов 
неизолированных проводников. Следовательно, это 
ограничение подчеркивает необходимость дополни-
тельных исследований для создания соответствую-
щих методов, адаптированных к уникальным требо-
ваниям изолированных проводов. 

Перечисленные выше стандарты поддерживают 
концепцию теплового баланса, которая предполага-
ет, что тепло, поглощаемое проводником, компенси-
руется теплом, рассеянным в процессе охлаждения.

Численно тепловой баланс выражается следую-
щей формулой:

P
s
 + P

j
 = P

c
 + P

r
,                      (1)

где P
s
 — интенсивность солнечной радиации, Вт/м; 

P
j
 — нагрузочные потери мощности, Вт/м; P

c
 —

мощность, отдаваемая путем конвективного тепло-
обмена, Вт/м; P

r
 — мощность, отдаваемая путем из-

лучения, Вт/м.
Конвективные потери тепла проводника зависят 

от разницы температур между проводником и окру-
жающей средой, а также от скорости и направле-
ния ветра. При скорости ветра свыше 0,2–0,6 м/с 
конвекцию следует принимать вынужденной.

Составляющие теплового баланса можно распи-
сать согласно [8] и [12]:
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,          (4)

,         (5)

где d
пр
 — диаметр провода, м; A

s
 — поглощатель-

ная способность провода для солнечного излуче-
ния; q

солн
 — плотность потока солнечной радиации  

на провод, Вт/м2; P
0
 — потери активной мощности, 

рассчитанные по сопротивлению, приведенному  
к 0 °C, Вт/м; 

0
 — температурный коэффициент 

электрического сопротивления при 0 °C, 1/°C;  
T
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ности провода, К; S

из
 — тепловое сопротивление 

изоляции, м∙К/Вт; 
вын

 — коэффициент теплоотда-
чи при вынужденной конвекции, Вт/(м2 ∙К); T

окр 
— 

абсолютная температура окружающей среды, К;  
ε — коэффициент излучения; C

0
 = 5,67 ∙10–8 — 

постоянная излучения абсолютно черного тела,  
Вт/(м2 ∙К4). 

Путем подстановки уравнений 2–5 в уравнение 
теплового баланса получим:

 	 .              (6)
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:

 	 (7)

Перенесем все переменные в одну сторону урав-
нения и вынесем общий коэффициент T

внеш
:

 	 (8)

Приведем выражение к уравнению четвертой 
степени, используя вспомогательные коэффициен-
ты A

1
 и A

0
:

 
			   ,                (9)
 			 

,         (10)
 	

(11)

Решить данное уравнение можно методом Фер-
рари [13, c. 239], используя вспомогательный пара-
метр β:

 			   (12)

Коэффициент β должен быть подобран так, что-
бы выполнялось следующее равенство: 

 	 (13)

С помощью формулы Кардано [13, c. 235] най-
дем корни кубического уравнения:

 		  (14)

Корни уравнения четвертой степени с найден-
ным вспомогательным коэффициентом β:

 			   (15)

С помощью дискриминанта найдем корни ква-
дратных уравнений:

		  (16)
 	

(17)

Искомым решением является один единствен-
ный корень. Путем многократных практических 
расчетов выведено, что 1-й, 2-й и 4-й корень на-
ходится в области либо отрицательных, либо ком-
плексных чисел. Таким образом, единственно вер-
ным является третий корень:

 			   (18)

Уравнение, связывающее температуру поверх-
ности провода и температуру жилы провода [12]:

 			   (19)

где 
пр
 — температура жилы провода, °C.

Сравнительный анализ
Выполним сравнительный анализ предложен-

ной математической модели с методом конечных 
элементов для трехмерного объекта в программном 
обеспечении Ansys Fluid Flow (CFX). 
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Модель включает в себя процессы теплообмена 
за счет конвекции и излучения, а также учитыва-
ет генерацию тепла внутри проводника из-за про-
хождения электрического тока. Модель также учи-
тывает изменения сопротивления при изменении 
температуры жилы с учетом температурного коэф-
фициента сопротивления. Для описания движения 
воздушных масс выбрана модель турбулентности 
Shear Stress Transport. Граничные условия включа-
ют скорость ветра 1 м/с и температуру окружаю-
щего воздуха 25 °C, солнечное излучение в данном 
исследовании не учитывалось. Для моделирования 
радиационных процессов применялся метод Monte-
Carlo. Технические характеристики, используемые 
при расчете, представлены в табл. 1. Для упроще-
ния расчетов не рассматривается многопроволоч-
ная структура проводника. Результаты трехмерного 
моделирования методом конечных элементов пред-

Таблица 1. Параметры, принятые при проведении расчетов
Table 1. Parameters accepted for calculations

Наименование и обозначение параметров СИП-3 1×35-20

Сечение проводника S, мм2 35

Погонное сопротивление провода 
при 20 °C R

20
, Ом/км

0,77

Диаметр жилы провода d
1
, мм 6,7

Внешний диаметр провода d
2
, мм 11,5

Коэффициент теплопроводности 
жилы λ

ж
, Вт/(м∙°К)

237

Коэффициент теплопроводности 
изоляции λ

из
, Вт/(м∙°К)

0,4

Температурный коэффициент 
сопротивления при 20 °C α

20
, °C–1 0,00403

Коэффициент излучения ε 0,8

Температура воздуха θ
в
, °C 25

Атмосферное давление P
атм

, кПа 101,325

Скорость ветра v, м/с 1

Коэффициент угла атаки ветра k
v

1

Удельная теплоемкость жилы С
ж
, 

Дж/(кг∙°C)
903

Удельная теплоемкость изоляции С
из
, 

Дж/(кг∙°C)
2300

Плотность жилы ρ
ж
, кг/м3 2702

Плотность изоляции ρ
из
, кг/м3 940

Рис. 1. Распределение температуры внутри проводника 
и окружающей его среды при силе тока 50 А 

Fig. 1. Temperature distribution inside the conductor and its 
surroundings at a 50 A current strength

Рис. 2. Распределение температуры внутри проводника 
и окружающей его среды при силе тока 200 А 

Fig. 2. Temperature distribution inside the conductor and its 
surroundings at a 200 A current strength

Таблица 2. Результаты расчетов температуры жилы методом конечных элементов
и представленной математической модели
Table 2. Calculation results of core temperature by finite element method and by presented mathematical model

Сила тока, 
А

Температура жилы, °C
Абсолютная погрешность

Δ = θ
мм

 – θ
мкэ

, °C
Относительная погрешность

δ = Δ / θ
мкэ

 ∙ 100%, %Представленная 
математическая модель θ

мм

Метод конечных 
элементов θ

мкэ

50 27,154 27,306 –0,152 –0,557

75 29,893 29,968 –0,075 –0,250

100 33,812 33,999 –0,187 –0,550

125 39,004 39,150 –0,146 –0,373

150 45,591 45,887 –0,296 –0,645

175 53,734 54,048 –0,314 –0,581

200 63,639 64,266 –0,627 –0,976
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ставлены на рис. 1 и рис. 2. В табл. 2 отображен 
сравнительный анализ представленной матема-
тической модели с методом конечных элементов.  
На рис. 3 изображена абсолютная и относитель-
ная погрешность между представленной матема-
тической моделью и методом конечных элементов. 
Можно наблюдать высокую степень соответствия  
с представленной математической моделью. По-
грешность расчета можно минимизировать, увели-
чивая плотность ячеек сетки.

Компьютерное моделирование, в отличие от су-
ществующих математических моделей, позволяет 
отобразить градиент температуры внутри прово-
дника. 

Однако ввиду высокой теплопроводности метал-
лов и небольших диаметров проводников данная ве-
личина имеет небольшие отклонения.

Хотя компьютерное моделирование предлагает 
множество очевидных преимуществ, важно отме-
тить, что в сфере практики проектирования чис-
ленные методы, как правило, являются основными 
используемыми инструментами.

Представленный метод дополнительно сравни-
вался с методами IEEE 738 и CIGRE 601 для случая 

неизолированных проводов; погрешность между 
полученными значениями была минимальна.

Влияние метеофакторов
Рассмотрим детальнее влияние метеофакторов 

по отдельности. 
Наличие ветра способствует охлаждению про-

водника, что приводит к снижению его температу-
ры за счет вынужденной конвекции, причем этот 
эффект становится все более выраженным по мере 
увеличения скорости воздушного потока. На рис. 4  
представлено влияние скорости ветра на темпера-
туру жилы проводника при различных значениях 
силы тока. В то же время учет скорости ветра вдоль 
всей линии представляется сложной задачей из-за 
сложной траектории движения воздушных масс 
[14].

Температура окружающей среды также оказы-
вает значительное влияние на тепловое состояние 
проводников. По мере повышения температуры 
воздуха проводник способен рассеивать меньше 
тепла посредством конвекции и излучения, что при-
водит к повышению его температуры [15]. На рис. 
5 отображено влияние температуры окружающей 

Рис. 4. Зависимость температуры жилы провода от скорости 
ветра при силе тока 50, 75, 100, 125, 150 А 

Fig. 4. Wire core temperature dependence on wind speed at 
current strengths of 50, 75, 100, 125, 150 A

Рис. 5. Зависимость температуры жилы провода 
от температуры окружающей среды при силе тока 

50, 75, 100, 125, 150 А 
Fig. 5. Wire core temperature dependence on surrounding 
temperature at current strengths of 50, 75, 100, 125, 150 A

Рис. 6. Зависимость температуры жилы провода 
от атмосферного давления при силе тока 

50, 75, 100, 125, 150 А
Fig. 6. Wire core temperature dependence on atmospheric 

pressure at current strength of 50, 75, 100, 125, 150 A

Рис. 3. Сравнительный анализ метода конечных элементов 
и представленной математической модели 

при изменении силы тока
Fig. 3. Comparative analysis of the finite element method 

and the presented mathematical model at changing
 the current intensity
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среды на температуру жилы проводника при ва-
риации силы тока. На рисунке можно увидеть, что 
изменение температуры имеет линейный характер, 
что делает этот фактор более точным для расчетов 
в отличие от влияния ветра.

Атмосферное давление оказывает менее выра-
женное влияние на тепловое состояние проводни-
ков по сравнению с температурой окружающей 
среды и ветром. Уменьшение атмосферного давле-
ния приводит к снижению эффективности тепло-
обмена, что, в свою очередь, повышает температу-
ру проводника. На рис. 6 отображена связь между 
температурой окружающей среды и температурой 
жилы проводника при некоторых значения силы 
тока. 

Заключение
Исследование, представленное в этой статье, 

подчеркивает растущую важность учета погод-
ных факторов при эксплуатации воздушных линий 
электропередачи, особенно в условиях растущего 
потребления электроэнергии и устаревания инфра-
структуры электросетевого комплекса. Поскольку 
тепловые нагрузки на линии электропередачи до-
стигают предельных значений, способность точно 
оценивать тепловые состояния проводов становится 
необходимой для обеспечения надежности и в то же 
время повышения эффективности энергосистемы.

Математическая модель, полученная в этом ис-
следовании, предлагает упрощенный, но эффек-
тивный подход к расчету температуры как изоли-
рованных, так и неизолированных проводников  
в различных условиях окружающей среды. Прове-
денный анализ подтверждает, что представленная 
модель не только обладает высоким уровнем точ-
ности, но и практична для внедрения в инженерные 
процессы.

Следует учитывать, что компьютерное модели-
рование, математические модели и даже датчики 
измерения температуры обладают определенным 
уровнем погрешности. Эта присущая неопределен-
ность должна быть тщательно рассмотрена и учтена 
определенным запасом прочности в любом практи-
ческом применении.
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