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В статье рассматривается применение искусственных нейронных сетей для коррекции насыщения 
трансформаторов тока и напряжения. В условиях насыщения данные трансформаторы могут искажать 
сигналы, что приводит к некорректной работе измерительных и защитных устройств. Использование 
искусственных нейронных сетей позволяет повысить точность обработки сигналов, улучшить надеж-
ность и безопасность электроэнергетических систем. В работе описываются методы обучения нейрон-
ных сетей на основе исторических данных, моделирование работы трансформаторов при различных 
условиях и алгоритмы коррекции искажений, вызванных насыщением.
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The article investigates the application of artificial neural networks for saturation correction in current 
and voltage transformers. Under saturation conditions, these transformers can distort signals, leading to the 
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Введение
Трансформаторы тока (ТТ) и напряжения (ТН) 

играют ключевую роль в измерительных и защит-
ных устройствах электроэнергетических систем. 

Они позволяют преобразовывать высокие уровни 
токов и напряжений в измеримые и безопасные для 
оборудования значения. Однако трансформаторы 
подвержены явлению насыщения, которое может 
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приводить к искажению выходных сигналов. Это,  
в свою очередь, может вызывать некорректную ра-
боту релейной защиты, нарушать точность измере-
ний и в итоге снижать надежность и безопасность 
электроэнергетических систем [1, 2].

Традиционные методы борьбы с насыщением 
трансформаторов включают использование спе-
циальных конструкций трансформаторов, а также 
применение фильтров и других средств коррекции. 
Однако они не всегда обеспечивают достаточную 
точность и требуют значительных затрат [3–5].  
В связи с этим растет интерес к применению совре-
менных методов обработки данных, таких как ис-
кусственные нейронные сети (ИНС), для решения 
данной проблемы.

Искусственные нейронные сети представляют 
собой мощный инструмент машинного обучения, 
способный выявлять сложные зависимости в дан-
ных и осуществлять нелинейную коррекцию сиг-
налов. В данной статье рассматриваются методы 
применения ИНС для коррекции искажений, вы-
званных насыщением трансформаторов тока и на-
пряжения. Приводятся результаты моделирования, 
демонстрирующие эффективность предложенных 
методов, а также обсуждаются перспективы их 
практического применения.

Цель исследования
Основной задачей данной работы является раз-

работка методов коррекции искажений, вызванных 
насыщением трансформаторов тока и напряжения, 
с использованием ИНС.

Для достижения этой цели необходимо решить 
следующие подзадачи:

1.  Анализ природы насыщения трансформато-
ров: Изучение причин и условий возникновения 
насыщения, а также его влияния на точность вы-
ходных сигналов трансформаторов. Выявление ос-
новных параметров, которые необходимо учиты-
вать при коррекции сигналов.

2.  Моделирование процесса насыщения: созда-
ние модели, которая точно описывает поведение 
трансформаторов в условиях насыщения. Эта мо-
дель будет использоваться для генерации данных, 
необходимых для обучения и тестирования ИНС.

3.  Разработка архитектуры ИНС: Определение 
оптимальной структуры нейронной сети, включая 
количество слоев, количество нейронов в каж-
дом слое, типы активационных функций и методы  
обучения.

4.  Обучение и тестирование ИНС: использова-
ние исторических данных и данных, полученных 
из модели насыщения, для обучения нейронной 
сети. Тестирование сети на различных наборах 
данных для оценки её эффективности в коррекции  
сигналов.

5.  Оценка эффективности методов: сравнение 
предложенного подхода с традиционными метода-
ми коррекции. Оценка точности, надежности и ско-
рости работы разработанной системы.

6.  Разработка рекомендаций по практическому 
применению: определение областей применения 
разработанных методов и рекомендаций по их ин-
теграции в существующие электроэнергетические 
системы.

Целью работы является создание эффектив-
ного инструмента, способного улучшить точность  
и надежность работы измерительных и защитных 
устройств, использующих трансформаторы тока  
и напряжения.

Основная часть
Трансформаторы тока и напряжения широко 

используются в электроэнергетических системах 
для обеспечения безопасного измерения электри-
ческих параметров и работы защитных устройств. 
Однако при высоких уровнях тока или напряжения, 
а также при появлении гармонических искажений 
трансформаторы могут достигать состояния на-
сыщения. В таких условиях магнитный сердечник 
перестает эффективно преобразовывать сигнал, что 
приводит к его искажению. Эти искажения могут 
проявляться в следующих формах:

—  ослабление амплитуды сигнала;
—  появление высших гармоник;
—  фазовые сдвиги.
Для уменьшения погрешностей трансформатор 

тока должен работать в прямолинейной части сво-
ей характеристики намагничивания (рис. 1), где ток 
намагничивания пропорционален потоку в сердеч-
нике трансформатора. 

Насыщение трансформаторов тока и напряжения 
происходит, когда магнитный сердечник трансфор-
матора достигает своей магнитной индукции насы-
щения и дальнейшее увеличение тока или напряже-
ния не приводит к пропорциональному увеличению 
магнитного потока. Это приводит к искажению 
выходных сигналов трансформатора. Насыщение 
может возникать из-за различных факторов, вклю-
чая высокие уровни токов и напряжений, наличие 
гармонических составляющих в сети, а также кон-
структивные особенности трансформаторов. Чтобы 
проиллюстрировать эту ситуацию, на рис. 2 показан 
случай: пусковой ток, в котором насыщение отсут-

Рис. 1. Характеристика намагничивания 
трансформатора тока

Fig. 1. Magnetization characteristic of 
a current transformer

Рис. 2. Пусковой ток идеального ТТ
Fig. 2. Inrush current of an ideal CT
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ствует, поскольку рассматривается идеальный ТТ. 
На рис. 3 показан тот же случай, где отчетливо вид-
ны искажения, вызванные насыщением.

Можно заметить разницу в формах сигналов для 
одной и той же ситуации, но с разными трансфор-
маторами тока. На рис. 4 и рис. 5 показан случай 
внутреннего повреждения силового трансформато-
ра с идеальным ТТ, а также с наличием явления 
насыщения ТТ соответственно.

Искажения, вызванные насыщением, могут 
приводить к существенным ошибкам в измерении 
параметров электроэнергетических систем и не-
корректной работе защитных устройств. Эти ис-
кажения могут проявляться в виде уменьшения 
амплитуды сигнала, появления высших гармоник  
и фазовых смещений. Важно корректировать эти 
искажения для обеспечения надежной работы си-
стем управления и защиты.

Искусственные нейронные сети (ИНС) являют-
ся мощным инструментом, способным решать за-
дачи, связанные с нелинейной обработкой данных. 
Их применение для коррекции насыщения транс-
форматоров основано на следующих принципах:

—  обучение на основе данных. Когда трансфор-
матор тока входит в режим насыщения, его вто-
ричный ток перестает точно соответствовать пер-
вичному — появляются искажения, особенно при 
коротких замыканиях. В таких случаях корректные 
(или «истинные») выходные сигналы — это те, ко-
торые отражали бы поведение ТТ без насыщения. 
Для получения этих данных используется моделиро-
вание, эксперименты в лаборатории, фильтрация\
оценка истинного тока, дублирование измерений. 
ИНС обучаются на полученных данных, что позво-
ляет выявлять сложные зависимости между иска-
женным и истинным сигналом;

—  обработка сигналов в реальном времени: По-
сле обучения сеть может использоваться для кор-
рекции сигналов в реальном времени, обеспечивая 
высокую скорость и точность;

—  адаптивность: ИНС способны адаптироваться 
к изменениям входных данных и условий эксплуа-
тации трансформаторов за счет дообучения.

ИНС представляют собой вычислительные мо-
дели, моделирующие принципы функционирования 
биологических нейронных систем. Основные эле-
менты ИНС включают:

—  нейроны — основные вычислительные эле-
менты, которые принимают несколько входных 
сигналов (x

1
,x

2
,…,x

n
) которые поступают от других 

нейронов или внешних источников. Каждое вход-
ное значение умножается на свой вес (w

1
,w

2
,…,w

n
), 

отражающий важность данного входа. После про-
исходит обработка и генерация выходного сигнала. 

—  слои: нейроны в нейронной сети объединя-
ются в слои, которые выполняют различные функ-
ции. Входной слой получает данные, скрытые слои 
обрабатывают информацию, а выходной слой вы-
дает результат. Каждый нейрон одного слоя связан  
со всеми нейронами следующего слоя (в случае 
полносвязных сетей). Однако существуют архитек-
туры, где связи могут быть ограниченными, напри-
мер, в сверточных или рекуррентных сетях;

—  активационные функции — это ключевой 
элемент работы нейронной сети, который вводит 
нелинейность. Без них сеть не смогла бы моделиро-
вать сложные зависимости и свелась бы к простой 
линейной модели. Функции определяют, как обра-
батывается сумма взвешенных входов в нейроне 
(z) и как этот результат передается на следующий 
слой. Популярные функции включают сигмоидную 
(Sigmoid), ReLU (Rectified Linear Unit) и тангенс ги-
перболический (Tanh). Нелинейные активационные 
функции позволяют сети обучаться сложным зави-
симостям в данных. Без них модель могла бы обу-
чить только линейные функции, которые ограниче-
ны в своей выразительности.

Совместная работа всех этих компонентов по-
зволяет нейронной сети обучаться на данных, 

Рис. 3. Пусковой ток ТТ с насыщением
Fig. 3. Inrush current of CT with saturation

Рис. 4. Ток идеального ТТ при внутреннем 
повреждении силового трансформатора
Fig. 4. Ideal CT current at internal fault of 

a power transformer

Рис. 5. Ток ТТ с насыщением при внутреннем повреждении 
силового трансформатора

Fig. 5. CT current with saturation at internal fault 
of a power transformer
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обобщать информацию и решать широкий спектр  
задач.

Простейшая однослойная нейронная сеть пока-
зана на рис. 6. Она описывается в общем случае 
математическим выражением для получения выход-
ной функции y

1
 через входные функции х

1
, х

2
, х

3
:

                                                   .

Поскольку ИНС могут обеспечить превосходное 
распознавание образов, они были предложены мно-

гими исследователями для выполнения различных 
задач в релейных системах электроснабжения для 
обработки сигналов и принятия решений [6–12].

Для разработки нейронной сети существует 
множество различных сред и инструментов, кото-
рые предоставляют удобные и мощные возможно-
сти для создания, обучения и тестирования моде-
лей. Самые популярные из них:

—  TensorFlow;
—  PyTorch;
—  Keras;
—  Jupyter Notebook;
—  Google Colab;
—  Microsoft Azure Machine Learning;
—  AWS SageMaker.
Один из методов коррекции насыщения ТТ за-

ключается в применении инверсной передаточной 
функции ТТ в форме ИНС [13]. Функция коррекции 
и передаточная функция последовательно включен-
ных ТТ должны обеспечивать идентичность первич-
ного и компенсированного вторичного токов. Это 
означает, что система коррекции должна полностью 
компенсировать искажения, возникающие в про-
цессе работы ТТ. Поскольку передаточная функция 
ТТ является нелинейной, то следует использовать 

Рис. 6. Простейшая 
однослойная ИНС 

Fig. 6. ANN simplest 
single-layer 

        31
132

1
121

1
11

2
1 xxxgy   

Рис. 7. Структура ИНС для коррекции ТТ
Fig. 7. Structure of ANN for CT correction

Рис. 8. График токов фазы B, полученных при моделировании 3-фазного
 замыкания на подстанции  (R = 0 Ом). Компенсация, осуществляемая ИНС 

структуры 5-5-1 (а). Оценка амплитуды первичного, вторичного 
и скомпенсированного тока (б)

Fig. 8. Graph of phase B currents obtained by modeling a 3-phase substation fault
 (R = 0 Ом). Compensation performed by the ANN of the 5-5-1 structure (a). 

Estimation of the amplitude of the primary, secondary and compensated current (б)
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нелинейную искусственную многослойную нейрон-
ную сеть с некоторой формой обратной связи (ре-
куррентная сеть), как показано на рис. 7. 

Наличие обратной связи в архитектуре сети 
позволяет учитывать историю изменения сигнала, 
что особенно важно для компенсации насыщения, 
имеющего временную компоненту. Обратная связь 
помогает сети анализировать динамические харак-
теристики сигнала и более точно восстанавливать 
его форму.

Сигмоидальная тангенциальная функция акти-
вации предназначена для нейронов скрытых слоев, 
а линейная — для выходного нейрона выбранной 
архитектуры ИНС.

Расширенное скользящее окно данных, включа-
ющее последние и несколько предыдущих выборок 
сигнала, подаётся на вход искусственной нейрон-
ной сети. Масштабированные отсчёты тока транс-
форматора тока обозначаются как i

W
(n–N+1),…, 

i
W
(n) и поступают на вход регистра.
Следует отметить, что все приведённые токи от-

носятся к вторичной обмотке ТТ. Выходной сигнал 
нейросети i

C
(n–N

d
) представляет собой скорректи-

рованный вторичный ток, приближённый по форме 
и значению к идеальному первичному току, приве-
дённому к вторичной стороне.

Результат компенсации вторичного тока ТТ 
представлен на рис. 8. Форма сигнала вторичного 
тока была получена из программы EMTP, моделиру-
ющей трехфазное замыкание на подстанции. Вид-
но, что предложенный ИНС корректор практически 
идеально воспроизводит первичный ток. Величина 
тока (рис. 8б) оценивается в соответствии с полно-
периодным методом Фурье.

Для лучшего понимания результатов следует 
указать номинальные токи обмоток трансформато-
ра тока, использованного в моделировании:

номинальный ток первичной обмотки — I
1N

 = 
=600 А,

номинальный ток вторичной обмотки — I
2N

 = 
=5 А.

В общем случае динамика ТН определяется дву-
мя факторами:

—  нелинейными колебаниями при насыщении 
магнитопровода ТН;

—  разрядкой внутренней энергии ТН при ко-
ротких замыканиях на соответствующей линии 
электропередачи.

Более сильное влияние оказывает второй источ-
ник переходных ошибок. В частности, неисправно-
сти при пересечении нуля первичных напряжений 
приводят к значительным переходным ошибкам, 
которые, в свою очередь, влияют на работу пита-
ющих реле.

Идея компенсации ошибок переходных процес-
сов ТН, представленная в [11], основана на нахож-
дении обратной передаточной функции модели ТН 
и воспроизведении ее с помощью ИНС. Что анало-
гично подходу, используемому для коррекции ТТ. 
Таким образом, предлагаемый ИНС-корректор име-
ет общую структуру, как на рис. 7.

При коротком замыкании на землю напряжение 
на трансформаторе тока уменьшается, что исключа-
ет вероятность насыщения магнитопровода. В таких 
условиях программа корректирует форму и ампли-
туду вторичного тока, компенсируя переходные ис-
кажения и восстанавливая точность измерений для 
дальнейшего использования в системе защиты.

Были протестированы и проанализированы раз-
личные варианты размерностей ИНС и соединений 
вход/обратная связь. В качестве примера на рис. 
9 представлен результат коррекции ТН при замы-
кании фазы на землю на подстанции. Замыкание 
происходит, когда напряжение первичной обмотки 
поврежденной фазы пересекает нулевое значение.

Заключение
Результаты исследования показали, что приме-

нение ИНС для коррекции насыщения трансфор-
маторов тока и напряжения позволяет значительно 
улучшить точность обработки сигналов и повысить 
надёжность работы электроэнергетических систем. 

Рис. 9. Результаты компенсации ошибок переходных  процессов ТН 
при замыкании на землю на подстанции. Компенсация, осуществляемая ИНС 

структуры 5-5-1 (а); оценка амплитуды первичного, вторичного 
и скомпенсированного напряжение (б)

Fig. 9. Results of the transient errors compensation of VT transients in case of earth 
fault at substation. Compensation performed by the ANN of the 5-5-1 structure (a); 

estimation of the amplitude of primary, secondary and compensated voltage (б)
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Проведённые эксперименты и моделирование под-
твердили эффективность предложенных методов  
в различных условиях эксплуатации.

ИНС продемонстрировали высокую способность 
к обучению на исторических данных и моделях на-
сыщения, что позволило эффективно компенси-
ровать искажения сигналов, вызванные насыще-
нием трансформаторов. В ходе тестирования на 
различных наборах данных было зафиксировано 
значительное снижение амплитудных и фазовых 
искажений, что свидетельствует о корректности ра-
боты предложенного метода. Сравнение результатов  
с традиционными методами коррекции показало, 
что ИНС превосходят их по точности, особенно  
в условиях сильного насыщения и наличия нели-
нейных искажений.

Одним из ключевых преимуществ ИНС являет-
ся их универсальность и адаптивность. Обученные 
нейронные сети показали способность корректиро-
вать искажения не только в условиях, на которых 
они были обучены, но и в новых, ранее неизвест-
ных ситуациях. Это делает использование ИНС пер-
спективным для различных типов трансформаторов 
и условий эксплуатации. Кроме того, возможность 
дообучения сети по мере накопления новых данных 
позволяет поддерживать высокую точность работы 
на протяжении всего времени эксплуатации транс-
форматоров.

Несмотря на высокую точность и адаптивность, 
одним из вызовов применения ИНС является их 
вычислительная сложность. Процесс обучения 
нейронной сети требует значительных ресурсов 
и времени, особенно при использовании больших 
наборов данных. Однако после завершения обуче-
ния работа сети в реальном времени требует суще-
ственно меньших вычислительных мощностей, что 
позволяет применять её в режиме онлайн для кор-
рекции сигналов в энергосистемах.

Применение ИНС для коррекции насыщения 
имеет высокую практическую значимость. В ре-
альных условиях работы электроэнергетических 
систем способность компенсировать искажения 
сигналов трансформаторов может значительно по-
высить надёжность и точность работы релейной 
защиты и систем управления. Это особенно важ-
но в условиях перегрузок и аварийных ситуаций, 
где даже небольшие ошибки в измерениях могут 
привести к серьёзным последствиям. Результаты 
исследования демонстрируют потенциал ИНС как 
эффективного инструмента для улучшения каче-
ства работы трансформаторов тока и напряжения.

Несмотря на положительные результаты, су-
ществуют определённые ограничения. Во-первых, 
качество работы ИНС зависит от объёма и каче-
ства данных, использованных для обучения. В не-
которых случаях может потребоваться длительный 
период для сбора достаточного количества данных 
для обучения сети. Во-вторых, возможна необходи-
мость регулярного дообучения сети для поддержа-
ния её точности в условиях изменения параметров 
системы.

Предложенный метод может быть интегриро-
ван в существующие системы управления электро-
энергетикой. Его использование особенно эффек-
тивно в высоковольтных сетях, где насыщение 
трансформаторов наиболее выражено. Внедрение 
данного подхода позволит повысить надежность 
работы измерительных и защитных устройств, что 
минимизирует риски возникновения аварийных си- 
туаций.

Также для компенсации токов, возникающих 
при насыщении трансформаторов тока и напря-
жения, можно использовать электронные схемы  
с обратной связью. Эти схемы обладают рядом 
преимуществ, таких как меньшая вычислительная 
сложность и простота реализации в реальном вре-
мени, что делает их привлекательными для опера-
тивной компенсации искажений без необходимо-
сти использования сложных методов машинного 
обучения.

Однако использование электронных схем с об-
ратной связью ограничено их меньшей адаптивно-
стью и способностью компенсировать нелинейные 
искажения. Такие схемы могут быть эффективно 
использованы в фиксированных условиях, но для 
сложных или меняющихся режимов работы энер-
гетических систем ИНС, благодаря своей адаптив-
ности и способности обучаться на данных, могут 
оказаться более универсальным решением.

Для дальнейшего улучшения метода коррекции 
насыщения рекомендуется провести дополнитель-
ные исследования по оптимизации архитектуры 
нейронной сети, разработке методов ускорения 
процесса обучения, а также интеграции ИНС в су-
ществующие системы управления электроэнергети-
ческими системами.
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