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ИССЛЕДОВАНИЕ ИЗМЕНЕНИЯ 
ЭЛЕКТРОМАГНИТНЫХ ПАРАМЕТРОВ 
В УПРАВЛЯЕМЫХ 
АСИНХРОННЫХ СПЕЦИАЛЬНЫХ 
ЭЛЕКТРИЧЕСКИХ ПРИВОДАХ
В статье проведено исследование изменения электромагнитных параметров 
управляемых асинхронных специальных электрических приводов. Специаль-
ными асинхронными электрическими приводами являются управляемые ка-
скадные электрические приводы цилиндрической и аксиальной конструкций. 
Исследование динамики изменения параметров было выполнено на основе 
метода электромагнитного преобразования энергии и теории электромаг-
нитных цепей. В итоге для новых математических моделей электромагнит-
ной системы исследуемых асинхронных электрических приводов определены 
параметры электромагнитного поля замкнутого витка одной катушки элек-
трической обмотки с электрическим током в однородной среде. Решенная 
задача является пространственной, так как определено распределение элек-
тромагнитной индукции в витке заданной формы электромагнитной катушки. 
Полученные выводы определения электромагнитных параметров цилиндри-
ческих и аксиальных двигателей специальных электрических приводов позво-
ляют правильно решать задачи моделирования, проектирования и улучшения 
эффективности исследуемых электрических приводов и электромеханических 
преобразователей энергии цилиндрической и аксиальной конструкций. Ре-
зультаты исследования применимы для создания системы автоматизирован-
ного проектирования исследуемых асинхронных электрических приводов и 
решения задач моделирования и проектирования. Проведенное исследование 
позволяет создавать электрические приводы оптимальными, массогабаритны-
ми и энергетическими показателями. 

Ключевые слова: специальный электрический привод, управляемый асинхрон-
ный каскадный электрический привод, преобразование энергии, математиче-
ское моделирование, электромагнитное поле, электромагнитная система.

Введение. Исследование изменения электромаг-
нитных параметров [1–2] управляемых асинхрон-
ных специальных электрических приводов [3–4] 
является довольно трудной задачей [5–6]. Для ре-
шения поставленной задачи необходимо правильно 
определять параметры электромагнитных процес-
сов [7–8], таких как электромагнитный поток, на-
пряженность электромагнитного поля, магнитная 
индукция [9–10]. От точности определения этих 
параметров зависит правильность определения 
мощности и электромагнитного момента [11–12]  
на валу специальных электрических приводов 
[13–14]. Результат исследования зависит от типа 
электрического привода, точности математических 
моделей, правильности проектирования, системы 
управления [15–16]. Полученный результат по-
зволит повышать эффективность исследуемых 
электроприводов [17–18], оптимизировать их соз-

дание [19–20] и автоматизированные системы 
управления [21–22]. Проводимое исследование 
необходимо для проектирования и создания но-
вых типов электроприводов [23–24]. Специальные 
электрические приводы находят применение в та-
ких отраслях промышленности, в машиностроении, 
электротранспорте, нефтегазовой, сталелитейной, 
горной, целлюлозно-бумажной, легкой, текстильной 
и других отраслях промышленности [25–26]. Тре-
бования к модернизации технологических и тех-
нических процессов, механизмов и оборудования 
заставляет электротехническую промышленность  
создавать новые типы электроприводов, к которым 
относятся асинхронные управляемые специальные 
электрические приводы [27–28].

Разработана математическая модель электро-
магнитной системы статора и ротора цилиндриче-
ских и аксиальных компонентов специальных асин-
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хронных электрических приводов, отличающиеся 
тем, что электромагнитная система представлена  
в виде совокупности электромагнитов переменно-
го тока. Схема замещения показана на рис. 1, где  
R

c 
— сопротивление участков ярма статора; R

зс
 — 

сопротивление участков зубцовой части статора;  
R

з 
 — сопротивление воздушного зазора; R

зр
 — со-

противление участков зубцовой части ротора; R
р
 —

сопротивление участков ярма ротора; I
к
 — электри-

ческий ток катушки; w
k
 — число витков катушки.

В результате использования математической 
модели электромагнитной системы в виде сово-
купности электромагнитов переменного тока за-
дача определения электромагнитных параметров  
в управляемых асинхронных специальных электри-
ческих приводах сводится к определению электро-
магнитных параметров отдельных катушек или 
катушечных групп, а конечный результат получен  
в виде суммирования результатов со своим сдвигом 
в пространстве и времени. 

Определяем электромагнитные параметры ком-
понентов специальных электрических приводов. 
Магнитная индукция, создаваемая электрическим 
током, протекающим в заданной точке по рассма-
триваемому участку, равна

                                 ,                (1)

где 
а
 — магнитная проницаемость среды, в кото-

рой расположен виток; I — величина тока в участке;  
a — перпендикуляр, восстановленный из точки 
пространства к заданному участку; 

2
 — угол между 

участком и прямой, соединяющей точку простран-
ства и конец этого участка; 

3
 — угол между участ-

ком и прямой, соединяющей точку пространства  
и начало этого участка.

Рассматриваемый участок показан на рис. 2.
Произведём рассечение плоскости витка пря-

мой. На плоскости найдем распределение магнит-
ной индукции. Закругленные части секции витка 
были заменены на прямые, параллельные рассека-
ющей прямой. Виток расположим так, чтобы одна 
сторона витка была на оси ox. Вершина сектора 
данного витка должна располагаться в центре ко-
ординат. Точка m может свободно перемещаться  
по заданной прямой (рис. 3).

Координаты пересечения заданной прямой и 
двух сторон секций равны (a;0) и (a cos/2; a sin/2), 
 — угол между сторонами витка. 

Представим виток в виде отдельных участков: 
ab, bc, cd и da. Магнитная индукция в точке m от 
действия четырёх участков будет равна 

B = B
ab
 + B

bc
 + B

cd
 + B

da
.             (2)

Определяем электромагнитные параметры ком-
понентов асинхронных управляемых специальных 
электрических приводов. Ранее была определена 
магнитная индукция, создаваемая электрическим 
током, протекающим в заданной точке по рассма-
триваемому участку [29].

Выражение для магнитной индукции имеет вид:

,           (3)

где B — магнитная индукция; μ
a
 — магнитная про-

ницаемость среды, в которой расположен виток; 
I — величина тока в участке; a — перпендикуляр, 
восстановленный из точки пространства к заданно-
му участку; A

i
, B

i
, C

i
 — произвольно принятые коэф-

фициенты; y — координата.
Для построения зависимости магнитной индук-

ции B от y необходимо рассмотреть каждое слага-
емое выражения (3) в отдельности для нахождения 
экстремума каждой функции и каждого слагаемого 
у

экстр
 и определить, максимум это или минимум. Не-

обходимо заметить, что y изменяется от 0 до xsin.
Определение максимума каждой отдельной 

функции, которая является одним из слагаемых вы-

Рис. 1. Схема замещения магнитной цепи

Рис. 2. Рассматриваемый участок

Рис. 3. Круглая катушка
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ражения (3), зависит от её производной по y. Полу-
ченную производную приравняем к нулю и решим 
полученное уравнение относительно y. Подстав-
ляя значения y: 0, xsin и у

экстр
, получаем значения 

магнитной индукции по краям рассматриваемого 
участка (0; xsin) B, B

к
 и в точке экстремума B

экстр 

каждой отдельной функции.

При анализе функции 
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 (функция 

1) были получены следующие выражения:

y
max1

 = x–r
вн
,                     (4)

В
н1
 = 0; 

 32 coscos
4




a
I

B a  

 

 



































































DyCy

ByA

DyCy

yA

DyCy

yA

DyCy

yBA

DyCy

C

DyCyyBA

C

DyCy

C

DyCyyBA

C

DyCy

C

DyCyyA

C

DyCyyA

C

DyCy

CIaB

2
11

2
1

33
2

3

22
2

22

2
5

2
55

9

22
2

4

22
2

44

8

11
2

5

11
2

6

7

33
2

7

6

33
2

5
4

 

11
2

1

DyCy

yA



 

 вн

вн

rxx

r
B




2
1max        221

2

внвн

вн
к

rxrx

r
B


  

33
2

3

DyCy

yA


 

  222

2

внешнвнеш

внеш
к

rxxr

r
B


  

22
2

4

DyCy

C


 

223

1

внешн

н
rx

B


      
xr

B
внешн

к



1

3  

;

                                ,                 (5)

где В
н1
, В

max1
, В

к1
 — начальное, максимальное и конеч-

ное значения магнитной индукции для функции 1;
y

max1
 — значение y, при котором магнитная ин-

дукция функции 1 максимальна.

При анализе функции 
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где В
н2
, В

к2
 — начальное и конечное значения маг-

нитной индукции для функции 2; r
внешн

, r
вн
 — внеш-

ний и внутренний радиусы компонента электропри-
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где В
н3
, В

к3
 — начальное и конечное значение маг-

нитной индукции для функции 3.
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где В
н4
, В

min4
, В

к4
 — начальное, минимальное и конеч-

ное значения магнитной индукции для функции 4; 
y

min4
 — значение y, при котором магнитная индук-

ция функции 4 минимальна.
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где В
н5
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 — начальное и конечное значение маг-

нитной индукции для функции 5.
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где В
н6
, В

min6
, В

к6
 — начальное, минимальное и конеч-

ное значения магнитной индукции для функции 6; 
y

min6
 — значение y, при котором функция 6 мини-

мальна.
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(функция 7) были получены следующие выражения:
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где В
н7
, В

к7
 — начальное и конечное значения маг-

нитной индукции для функции 7.
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(функция 8) были получены следующие выражения:
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где В
н8
, В
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 — начальное и конечное значения маг-

нитной индукции для функции 8.
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где В
н9
, В

к9
 — начальное и конечное значения маг-

нитной индукции для функции 9.
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 (функ-
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где В
н10

, В
к10

 — начальное и конечное значения маг-
нитной индукции для функции 10.
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где В
н11

, В
max11

, В
к11

 — начальное, максимальное и ко-
нечное значения магнитной индукции для функции 
11; y

max11
 — значение y, при котором функция 11 

максимальна.
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где В
н12

, В
к12

 — начальное и конечное значения маг-
нитной индукции для функции 12.

По формулам (4)–(19) строим функции 1, 2, 3, ...,  
12. Выражения (4)–(19) зависят от угла ; например, 
угол  равен 90 , исходя из формы витка обмотки 
четырёхполюсного аксиального асинхронного элек-
тродвигателя. Для получения изменения магнитной 
индукции (1) во внутренней области витка сложим 
полученные функции 1, 2, 3,... ,12, учитывая, что r

вн
 =1,  

r
внешн

 =3, а x будет равно 1,5 для первой зависи-
мости, для второй зависимости — 2, а для тре- 
тьей — 2,5.

Величина x указывает местонахождение рас-
секающей прямой. Для данного рассматриваемого 
случая величина x, равная 2, соответствует центру 
витка. Тогда соответственно 1,5 — одной четвёртой 
витка, а 2,5 — трём четвёртым.

Предложенная математическая модель электро-
магнитной системы статора и ротора цилиндри-
ческих и аксиальных компонентов специальных 
асинхронных электрических приводов отличается 
от существующих моделей и численных методов 
расчета, например, метода конечных элементов, 
реализованных в программных продуктах, таких 
как Elcut, Ansys, Comsol, тем, что позволяет опре-
делять электромагнитные параметры исследуемых 
объектов на основе полученных аналитических вы-
ражений. Расчет электромагнитной системы произ-
водится по отдельным катушкам или катушечным 
группам, а конечный результат получен в виде 
суммирования результатов со своим сдвигом в про-
странстве и времени. 

Для расчета электромагнитных параметров ис-
следуемых устройств необходимо определить мак-
симальную индукцию на каждом из участков схемы 
замещения (рис. 1) и знать изменение магнитной 
индукции в пространстве. Расположим зависимости 
изменения магнитной индукции для различных x на 
плоскостях, перпендикулярных заданному витку 
(рис. 2, 3). 

Исследование полученных зависимостей пока-
зало, что магнитная индукция в витке такой фор-
мы увеличивается с приближением к более широ-
кой части витка и уменьшается при приближении 
к более узкой его части. Около более узкой части 
витка магнитная индукция имеет явно выраженную 
вогнутость, а возле широкой — выпуклость. При 
рассечении витка вдоль получаем зависимость из-
менения магнитной индукции в этой плоскости. Так 
же получаем распределение магнитной индукции  

от одной секции обмотки, состоящей из трёх кату-
шек, в каждой из которых один такой виток, сме-
щённых на угол 360/z как в одной плоскости, так  
и в аксонометрии. 

Для определения распределения магнитной ин-
дукции в одной секции обмотки рассматриваемо-
го компонента электропривода нужно в формулы 
(4)–(19) подставить значения внешнего и внутрен-
него радиусов данного компонента, а также ве-
личину x. Это необходимо сделать в зависимости  
от того места на витке, где определяется распреде-
ление магнитной индукции.

Используя данную методику расчётов, мож-
но провести исследование динамики изменения 
электромагнитных параметров управляемых специ-
альных электрических приводов во вновь проекти-
руемой конструкции специального электрического 
привода. Также можно получить распределение 
магнитной индукции в уже существующих элек-
трических приводах и конструкциях электрических 
двигателей. Это позволит правильно определять ис-
комые параметры для оптимального проектирова-
ния, улучшения эффективности электроприводов. 
Проведенное исследование позволяет создавать 
систему контрольных примеров при разработке ал-
горитмов. Использование алгоритмов оптимального 
выбора данных позволяет правильно создавать про-
граммы расчета исследуемых объектов.

Заключение. Используя данную методику рас-
чётов, можно проследить изменение электромаг-
нитных параметров управляемых асинхронных 
специальных электрических приводов для вновь 
проектируемой конструкции специального электри-
ческого привода и его компонентов — асинхронных 
двигателей. Также можно получить распределение 
магнитной индукции в уже существующих элек-
трических приводах и конструкциях. Это позволит 
правильно определять искомые параметры для оп-
тимального проектирования, улучшения эффектив-
ности электроприводов. 

Проведенное исследование позволяет создавать 
систему контрольных примеров при разработке 
алгоритмов и программ расчета исследуемых объ-
ектов, а также разработать конструкции, позволя-
ющие более эффективно использовать магнитную 
систему как цилиндрических, так и аксиальных 
электроприводов.
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