Preview

Omsk Scientific Bulletin

Advanced search

Current-to-frequency converter based on oscillistor effect

https://doi.org/10.25206/1813-8225-2024-192-134-138

EDN: IXAXOD

Abstract

The article examines the development of a system for monitoring the volumetric supply of liquid in pumping units. The relevance of the research is due to the growing requirements for automation of control of pumping systems. The key element of the system is the observer, which allows evaluating the main parameters of the installation, such as the pump rotation speed and the moment of resistance. The electric drive of the pump uses an asynchronous motor with a squirrel-cage rotor, the rotation speed of which is controlled. The pressure in the discharge pipeline is created by a centrifugal pump. The observer is based on a model of an asynchronous motor in a fixed coordinate system, and the Luenberger observer is used to estimate the rotation speed and torque of the pump. To identify the volume flow, a centrifugal pump model is used, parameterized by a second-degree polynomial. The authors present simulation results showing the high accuracy of the developed observer, with an error of no more than 3% in steady state. The results demonstrate the effectiveness of the proposed approach for constructing a monitoring system for pumping units.

About the Authors

A. I. Cheredov
Omsk State Technical University
Russian Federation

CHEREDOV Aleksandr Ivanovich, Candidate of Technical Sciences, Associate Professor, Associate Professor of Radio Engineering Devices and Diagnostic Systems Department

Omsk

AuthorID (RSCI): 471995



A. V. Shchelkanov
Omsk State Technical University
Russian Federation

SHCHELKANOV Andrey Vladimirovich, Senior Lecturer of Radio Engineering Devices and Diagnostic Systems Department

Omsk

AuthorID (SCOPUS): 56447045400

ResearcherID: P-9053-2015



References

1. Li W., Liu L., Shi R. [et al.]. Acoustoelectric Voltage Sensor Based on S0 Mode Lamb Wave Resonator with Millivolt Resolution // 2023 IEEE International Ultrasonics Symposium (IUS), Montreal, QC, Canada. 2023. P. 1–4. DOI: 10.1109/IUS51837.2023.10306502. (In Engl.).

2. Malyshev I. V., Osadchiy E. N. Primeneniye sil′nykh postoyannykh magnitnykh i elektricheskikh poley dlya sozdaniya novykh ob′′yemnykh poluprovodnikovykh preobrazovatel′nykh uzlov [The use of strong constant magnetic and electric fields to create a new type of bulk semiconductor converter units] // Izvestiya Yuzhnogo federal′nogo universiteta. Tekhnicheskiye nauki. Izvestiya SFedU. Engineering Sciences. 2019. No. 6 (208). P. 70–85. (In Russ.).

3. Gliksman M. Instabilities of a cylindrical electron-hole plasma in a magnetic field // Physical Review. 1961. Vol. 124. P. 1655–1664. DOI: 10.1103/PhysRev.124.1655. (In Engl.).

4. Ivanov Yu. L., Ryvkin M. Vozniknoveniye kolebaniy toka v obraztsakh germaniya, pomeshchennykh v elektricheskoye i prodol′noye magnitnoye pole [Occurrence of current oscillations in germanium samples placed in an electric and longitudinal magnetic field] // Zhurnal tekhnicheskoy fiziki. Journal of Technical Physics. 1958. Vol. 28. P. 54–56. (In Russ.).

5. Vladimirov V. V., Volkov A. F., Meylikhov E. Z. Plazma poluprovodnikov [Semiconductor plasma]. Moscow, 1979. 254 p. (In Russ.).

6. Cheredov A. I., Shchelkanov A. V., Akhmedzhanov R. A., Korenev E. O. Magnetically sensitive converter of the magnetic field gradient based on oscillistor // Dynamics of Systems, Mechanisms and Machines (Dynamics). 2017. P. 1–3. DOI: 10.1109/Dynamics.2017.8239443. (In Engl.).

7. Shchelkanov A. V., Cheredov A. I. Oscillistor-based force sensor // Journal of Physics: Conference Series. 2020. Vol. 1546. 012002. DOI: 10.1088/1742-6596/1546/1/012002. (In Russ.).

8. Gaman V. I., Drobot P. N. Oscillistor sensors with a frequency output based on a silicon structures // Electronic Instrument Engineering Proceedings. APEIE-98. 1998. Vol. 1. P. 133–135. DOI: 10.1109/APEIE.1998.768930. (In Engl.).

9. Drobot P. N., Drobot D. A. Ostsillistornyye sensory s chastotnym vykhodom [Oscillistor sensors with a frequency output] // Yuzhno-sibirskiy nauchnyy vestnik. South-Siberian Scientific Bulletin. 2012. No. 1. P. 120–123. EDN: PAGHTH. (In Russ.).

10. Hurwitz С. Е., McWhorter A. L. Growing helical density waves in a semiconductor plasmas // Physical Review Letters. 1964. Vol. 134 (4A). P. 1033–1050. DOI: 10.1103/PhysRev.134.A1033. (In Engl.).

11. Vikulin I. M., Lyuze L. L., Presnov V. A. Chastota vintovoy nestabil′nosti v ostsillistorakh [Frequency of helical instability in oscillistors] // Fizika i tekhnika poluprovodnikov. Fizika i Tekhnika Poluprovodnikov. 1968. Vol. 2, no. 8. P. 1138–1143. (In Russ.).

12. Lampert M., Mark P. Inzhektsionnyye toki v tverdykh telakh [Current Injection in Solids]. Moscow, 1973. 416 p. (In Russ.).

13. Cheredov A. I., Shchelkanov A. V. Angular displacement sensor based on oscillistor effect // Journal of Physics: Conference Series. 2021. Vol. 1901. Р. 012104-1-012104-7. DOI: 10.1088/1742-6596/1901/1/012104. (In Engl.)


Review

For citations:


Cheredov A.I., Shchelkanov A.V. Current-to-frequency converter based on oscillistor effect. Omsk Scientific Bulletin. 2024;(4):134-138. (In Russ.) https://doi.org/10.25206/1813-8225-2024-192-134-138. EDN: IXAXOD

Views: 16

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)