Preview

Омский научный вестник

Расширенный поиск

Перспективные системы для управления протезами: обзор

https://doi.org/10.25206/1813-8225-2024-192-150-160

EDN: ANKBHV

Аннотация

Люди с ограниченными возможностями в условиях стремительной научно-технической революции надеются, что она преодолеет лишь оказание им поддержки и найдет подходящие решения, чтобы вести нормальную жизнь. Взаимодействие наук между собой учитывает проблему физических недостатков и, в частности, потерю как верхних, так и нижних конечностей. Современные протезы являются продуктом пересечения науки и технологической революции и все еще находятся на пути своего становления, поскольку содержат исполнительные механизмы, которые могут управляться сигналами мозга по принципу нейроинтерфейсов. Методы нейровизуализации, такие как электромиография, функциональная инфракрасная спектроскопия и электроэнцефалография, являются превосходными методами управления этими современными протезами, которые можно смоделировать по двум функциям, а именно по независимой работе и гибридной работе. В свете этих данных статья рассматривает эти системы в их индивидуальных и гибридных состояниях. Кроме того, в статье указывается, какой из этих методов может быть выбран в качестве предпочтительной системы. Область применения методологии исследования ограничена методами нейровизуализации в отношении сценариев неврологической реабилитации и восстановления утраченных функций. Обзор имеет три направления. Первое направление собирает, обобщает и оценивает информацию из соответствующих исследований, опубликованных за последнее десятилетие. Второе представляет важные результаты предыдущих экспериментальных результатов в этой области в отношении текущих исследований. Исследование было проведено систематически, чтобы предоставить всем экспертам и ученым полное представление и основанные на доказательствах методы управления протезами. Третья часть заключается в выявлении широкой области знаний, требующей дальнейшего изучения, и отслеживании последовательности научных достижений в этих системах и возможности интеграции между собой для создания наиболее перспективной системы управления протезами.

Об авторе

А. М. Самандари
Белгородский государственный национальный исследовательский университет
Россия

САМАНДАРИ Али Мирдан, aспирант 

г. Белгород



Список литературы

1. Neelum Y. S., Zareena K., syed Usama A. fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees // Sensors. 2022. Vol. 22. 726. DOI: 10.3390/s22030726.

2. Asadullayev R. G., Afonin A. N., Shchetinina E. S. Recognition of patterns of motor activity by a neural network based on continuous optical tomography FNIRS data // Economics. Information technologies. 2021.Vol. 48, no. 4 P. 735–746. DOI: 10.52575/2687-0932-2021-48-4-735-746. EDN: NFDBUX.

3. Hramov A. E., Maksimenko V. A., Pisarchik A. N. Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain state // Physics Reports. 2021. Vol. 918. P. 1–133. DOI: 10.1016/j.physrep.2021.03.002.

4. Peksa J., Mamchur D. State-of-the-Art on Brain-Computer Interface Technology // Sensors 2023. Vol. 23. 6001. DOI: 10.3390/s23136001.

5. Sergio L. N., Alex C. C., Forti R. M. [et al.]. Revealing the spatiotemporal requirements for accurate subject identification with resting-state functional connectivity: a simultaneous fNIRSfMRI study // Neurophotonics. 2023. Vol. 10(1). DOI: 10.1117/1. NPh.10.1.013510.

6. Klein F. S., Debener K. W., Kranczioch C. fMRI-based validation of continuous-wave fNIRS of supplementary motor area activation during motor execution and motor imagery // Scientific Reports. 2022. Vol. 12 (1). DOI: 10.1038/s41598-022-06519-7.

7. Deligani R. J., Borgheai S. B., McLinden J. [et al.]. Multimodal fusion of EEG-fNIRS: a mutual information-based hybrid classification framework // Biomed Opt Express. 2021. Vol. 12 (3). 1635. DOI: 10.1364/boe.413666.

8. Asanza V., Pelaez E., Loayza F. [et al.]. Identification of lower-limb motor tasks via brain-computer interfaces: a topical overview // Sensors. 2022. Vol. 22 (5). DOI: 10.3390/s22052028.

9. Khajuria A., Sharma R., Joshi D. EEG Dynamics of Locomotion and Balancing: Solution to Neuro-Rehabilitation // Clinical EEG and Neuroscience. 2024. Vol. 55 (1). P. 143–163. DOI: 10.1177/15500594221123690.

10. Mondini V., Sburlea A. I., Müller-Putz G. R. Towards unlocking motor control in spinal cord injured by applying an online EEG-based framework to decode motor intention, trajectory and error processing // Scientific Reports. 2024. Vol. 14. 4714. DOI: 10.1038/s41598-024-55413-x.

11. Usama A. S., Zareena K., Neelum Y. S. Control of a Prosthetic Arm using fNIRS, A Neural-Machine Interface // Data Acquisition – Recent Advances and Applications in Biomedical Engineering. 2020. DOI: 10.5772/intechopen.93565.

12. Afonin A. N., Asadullaev R. G., Sitnikova M. A. Analysis of data of FNIRS-tomograph for management of LIMB-protoses by means of Brain-computer interface // Scientific and Technical Volga region Bulletin. 2018. Vol. 11. P. 182–185. EDN: YTOMIP.

13. Dario F., Ning J., Hubertus R. [et al.]. The extraction of neural information from the surface EMG for the control of upperlimb prostheses: Emerging avenues and challenges // IEEE Trans. Neural Syst. Rehabil. Eng. 2014. Vol. 22, no. 4. P. 797–809. DOI: 10.1109/TNSRE.2014.2305111.

14. Becerra-Fajardo L., Minguillon J., Krob M. O. [et al.]. Firstin-human demonstration of floating EMG sensors and stimulators wirelessly powered and operated by volume conduction // Journal of NeuroEngineering and Rehabilitation. 2024. Vol. 21 (1). 4. DOI: 10.1186/s12984-023-01295-5.

15. Osama M., Allauddin U. Design and modelling of lower prosthetic limb for additive manufacturing // Proceedings of IMEC-2022, 14th – 15th January, Karachi, Pakistan. 2022. 8 p.

16. Satam I. A. A comprehensive study of EEG-based41control of artificial arms // Vojnotehnički glasnik / Military Technical Courier. 2023. Vol. 71, Issue 1. DOI: 10.5937/vojtehg71-41366.

17. Tao S., Zhe Y., Guo Sh. [et al.] Review of sEMG for Robot Control: Techniques and Applicationsby // Applied Sciences. 2023.Vol. 13 (17). 9546. DOI: 10.3390/app13179546.

18. Khorasani A., Hulsizer J., Paul V. [et al.]. Myoelectric interface for neurorehabilitation conditioning to reduce abnormal leg co activation after stroke: a pilot study // Journal NeuroEngineering Rehabil. 2024. Vol. 21. 11. DOI: 10.1186/s12984-024-01305-0.

19. Asanza V., Pelaez E., Loayza F. [et al.]. Identification of lower-limb motor tasks via brain-computer interfaces: a topical overview. Sensors. 2022. Vol. 22 (5). 2028. DOI: 10.3390/s22052028.

20. Abdalmalak A., Milej D., Cohenet D. [et al.]. Using fMRI to investigate the potential cause of inverse oxygenation reported in fNIRS studies of motor imagery // Neurosci Lett. 2020. Vol. 714. 134607. DOI: 10.1016/j.neulet.2019.134607.

21. Wang H., Yan F., Xu T. [et al.]. Brain-Controlled Wheelchair Review: From Wet Electrode to Dry Electrode, from Single Modal to Hybrid Modal, from Synchronous to Asynchronous // IEEE Access. 2021. Vol. 9. P. 55920–55938. DOI: 10.1109/ACCESS.2021.3071599.

22. Xu B., Wenlong L., Deping L. [et al.]. Continuous Hybrid BCI Control for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye Tracking // Mathematics. 2022. Vol. 10, no. 4. DOI: 10.3390/math10040618.

23. Sun Z., H. Zihao, D. Feng [et al.]. A Novel Multimodal Approach for Hybrid Brain-Computer Interface // IEEE Access. 2020. Vol. 8. P. 89909–89918. DOI: 10.1109/ACCESS.2020.2994226.

24. Pichiorri F., Toppi J., de Seta V. [et al.]. Exploring high density corticomuscular networks after stroke to enable a hybrid Brain Computer Interface for hand motor rehabilitation // Journal of NeuroEngineering and Rehabilitation. 2023. Vol. 20(1). DOI: 10.1186/s12984-023-01127-6.

25. Si J., Yang Y., Xu L. [et al.]. Evaluation of residual cognition in patients with disorders of consciousness based on functional near-infrared spectroscopy // Neurophotonics. 2023. Vol. 10, no. 2. DOI: 10.1117/1.nph.10.2.025003.

26. Hamid H., Naseer N., Nazeer H. [et al.]. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks // Sensors. Vol. 22 (5). 1932. DOI: 10.3390/s22051932,2022.

27. Mustafa A. H. H., Muhammad U. K., Deepti M. A Computationally Efficient Method for Hybrid EEG-fNIRS BCI Based on the Pearson Correlation // BioMed Research International. 2020. Vol. 2020. 1838140. 13 p. DOI: 10.1155/2020/1838140.

28. Sial M. B.,Wang S., Wang X. [et al.]. A Survey on EEG – fNIRS based Non-invasive hBCIs // 2021 International Conference on Artificial Intelligence (ICAI). 2021. P. 240–245. DOI: 10.1109/ICAI52203.2021.9445246.

29. Wang Z., Lu Y., Yijie Z. [et al.]. Incorporating EEG and fNIRS Patterns to Evaluate Cortical Excitability and MI-BCI Performance During Motor Training // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023. Vol. 31. P. 2872–2882. DOI: 10.1109/TNSRE.2023.3281855.

30. Radha H. M., Karim A., Ali Al-Timemy H. University of Baghdad [et al.]. Recognition of Upper Limb Movements Based on Hybrid EEG and EMG Signals for Human-Robot Interaction // Iraqi Journal of Computer Communication Control and System Engineering. 2023. Vol. 23, no. 2. DOI: 10.33103/uot.ijccce. 23.2.14.

31. Lubo F., Haoyang L., Hongfei J. [et al.]. EEG-EMG analysis method in hybrid brain computer interface for hand rehabilitation training // Computing and Informatics. 2023. Vol. 42 (3). P. 741–761. DOI: 10.31577/cai_2023_3_741.

32. Kwon J., Shin J., Im C. H. Toward a compact hybrid braincomputer interface (BCI): Performance evaluation of multi-class hybrid EEG-fNIRS BCIs with limited number of channels // PLoS One. 2020. Vol. 15, no. 3. DOI: 10.1371/journal.pone.0230491.

33. Beniczky S., Donald L. S. Electroencephalography: basic biophysical and technological aspects important for clinical applications // Epileptic Disord. 2020. Vol. 22, no. 6. DOI: 10.1684/epd.2020.1217.

34. Marius V. D., Hadăr A., Goga N. [et al.]. Design and implementation of an eeg-based bci prosthetic lower limb using raspberry PI 4 // U.P.B. Sci. Bull., Series C. 2023. Vol. 85, Issue. 3. P. 353–366.

35. He L., Guo Sh., Bu D. [et al.]. Subject-Independent Estimation of Continuous Movements Using CNN-LSTM for a Home-Based Upper Limb Rehabilitation System // IEEE Robotics and Automation Letters. 2023. P. 1–8. DOI: 10.1109/LRA.2023.3303701.

36. Jin H. Li C., Sun L., Hu H. [et al.]. To classify twodimensional motion state of step length and walking speed by applying cerebral hemoglobin information // 2017 10th International Conference on Human System Interactions (HSI). 2017. P. 216–222. DOI: 10.1109/HSI.2017.8005032.

37. Yang L., Song Y., Ma K. [et al.]. A novel motor imagery EEG decoding method based on feature separation // Journal of Neural Engineering. 2021. Vol. 18. 036022. DOI:10.1088/1741-2552/abe39b.

38. Milanes D. H., Codorniu R. T., Baracaldo R. [et al.]. Shallow Convolutional Network Excel for Classifying Motor Imagery EEG in BCI Applications // IEEE Access. 2021. Vol. 9. P. 98275–98286. DOI: 10.1109/ACCESS.2021.3091399.

39. Aydin E. A. Subject-specific feature selection for near infrared spectroscopy based brain–computer interfaces // Computer Methods and Programs in Biomedicine. 2020. Vol. 195 (12). 105535. DOI: 10.1016/j.cmpb.2020.105535.

40. Bin Abdul Ghaffar M. S., Khan U. S., Naseer N. [et al.]. Improved Classification Accuracy of Four Class FNIRS-BCI // 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). 2020. P. 1–5. DOI: 10.1109/ECAI50035.2020.9223258.

41. Guo W. C., Zhang X., Liu H. [et al.]. Toward an enhanced human machine interface for upper-limb prosthesis control with combined EMG and NIRS signals // IEEE Trans. HumanMach. Syst. 2017. Vol. 47, no. 4. P. 1–12. 564575. DOI: 10.1109/THMS.2016.2641389.

42. Lin J. F. L. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children // Cerebral Cortex. 2023. Vol. 33 (7). P. 4116–4134. DOI: 10.1093/cercor/bhac330.

43. Maher A., Salankar N., Qaisar S. M. [et al.]. Hybrid EEGfNIRS brain-computer interface based on the non-linear features extraction and stacking ensemble learning // Journal of Applied Biomedicine. 2023. Vol. 43 (1). P. 463–475. DOI: DOI:10.1016/j.bbe.2023.05.001.

44. Liu Z., Shore J., Wang M. [et al.]. A systematic review on hybrid EEG/fNIRS in brain-computer interface // Biomed Signal Process Control. 2021. Vol. 68. 102595. DOI:10.1016/j.bspc.2021.102595.

45. Xu T., Yang Y., Zhou Zh. [et al.]. Motor Imagery Decoding Enhancement Based on Hybrid EEG–fNIRS Signals // IEEE Access. 2023. Vol. 1(1). P. 1–12. DOI: 10.1109/ACCESS.2023.3289709.

46. Li R., Yang D., Fang F. [et al.]. Concurrent fNIRS and EEG for Brain Function Investigation: A Systematic, MethodologyFocused Review // Sensors. 2022. Vol. 22, no. 15. 5865. DOI: 10.3390/s22155865.

47. Chunfu L., Ruite G., Zhichuan T. [et al.]. Multi-channel FES gait rehabilitation assistance system based on adaptive sEMG modulation // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023. Vol. 31. P. 3652–3663. DOI: 10.1109/tnsre.2023.3313617.

48. Song T., Yan Z., Guo S. [et al.]. Review of sEMG for Robot Control: Techniques and Applications // Applied Sciences. 2023. Vol. 13, no. 17. DOI: 10.3390/app13179546.

49. Radek M., Martina L., Michaela S. [et al.]. Advanced bioelectrical signal processing methods: Past, present, and future approach — Part III: Other biosignals // Sensors. 2021. Vol. 21 (18). 6064. DOI: 10.3390/s21186064.

50. Cheng X., Sie E. J., Boas D. A. [et al.]. Choosing an optimal wavelength to detect brain activity in functional nearinfrared spectroscopy // Optics Letters. 2021. Vol. 46 (4). 924. DOI: 10.1364/ol.418284.

51. Kimoto H. F., Machida M. A wireless multi-layered EMG/ MMG/NIRS sensor for muscular activity evaluation // Sensors. 2023. Vol. 23 (3). 1539. DOI: 10.3390/s23031539.

52. Giminiani R. D., Marco C., Marco F. [et al.]. Validation of fabric-based thigh-wearable EMG sensors and oximetry for monitoring quadricep activity during strength and endurance exercises // Sensors. 2020. Vol. 17. P. 1–13. 4664. DOI: 10.3390/s20174664.

53. Daniel N., Sybilski K., Kaczmarek W. [et al.]. Relationship between EMG and fNIRS during Dynamic Movements // Sensors. 2023. Vol. 23 (11). 5004. DOI: 10.3390/s23115004.

54. Atzori M., Gijsberts A., Castellini C. [et al.]. Electromyography data for non-invasive naturally-controlled robotic hand prostheses // Nature. 2014. Vol. 1. DOI: 10.1038/sdata.2014.53.

55. Dario F., Ning J., Hubertus R. [et al.]. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges // IEEE Trans. Neural Syst. Rehabil. Eng. 2014. Vol. 22, no. 4. P. 797–809. DOI:10.1109/TNSRE.2014.2305111.

56. Arif A., Khan M., Kashif J. [et al.]. Hemodynamic response detection using integrated EEG–fNIRS-VPA for BCI // Computers, Materials and Continua. 2021. Vol. 70., no. 1. P. 535– 555. DOI: 10.32604/cmc.2022.018318.

57. Kwak Y., Song W. J., Kim S. E. FGANet: FNIRSGuided Attention Network for Hybrid EEG–fNIRS BrainComputer Interfaces // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2022. Vol. 30. P. 329–339. DOI: 10.1109/TNSRE.2022.3149899.

58. Neelum Y. S., Zareena K., Usama S. [et al.]. Enhancing classification accuracy of transhumeral prosthesis: a hybrid sEMG and fNIRS approach // IEEE Access. 2021. Vol. 9. P. 113246– 113257. DOI: 10.1109/ACCESS.2021.3099973.

59. Nsugbe E., Phillips C., Fraser M. F. [et al.]. Gesture recognition for transhumeral prosthesis control using EMG and NIR // IET Cyber-Systems and Robotics. 2020. Vol. 2, Issue 3. P. 122–131. DOI: 10.1049/iet-csr.2020.0008.

60. Xiang Z., Yao L., Wang X. [et al.]. A Survey on Deep Learning-based Non-Invasive Brain Signals: Recent Advances and New Frontiers // Journal of Neural Engineering. 2020. Vol. 18 (3). DOI:10.1088/1741-2552/abc902.

61. Moufassih M., Tarahi O., Hamou S. [et al.]. Boosting motor imagery brain-computer interface classification using multiband and hybrid feature extraction // Multimedia Tools and Applications. 2023. Vol. 83 (16). P. 1–32. DOI: 10.1007/s11042-023-17118-7.

62. Shelishiyah R., Dharan M., Kumar T. [et al.]. Signal Processing for Hybrid BCI Signals // Journal of Physics Conference Series. 2022. Vol. 2318 (1). 012007. DOI: 10.1088/1742-6596/2318/1/012007.

63. Ali M. U., Kim K. S., Kallu K. D. [et al.]. OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface // Bioengineering. 2023. Vol. 10, no. 5. DOI: 10.3390/bioengineering10050608.

64. Brian F. S., Charles P., Christopher H. [et al.]. The evolution of neuromodulation for chronic stroke: From neuroplasticity mechanisms to brain-computer interfaces // Neurotherapeutics. 2024. Vol. 21, Issue 3. e00337. DOI 10.1016/j.neurot.2024.e00337.

65. Na L., Rui Z., Bharath K. [et al.]. Non-invasive Techniques for Muscle Fatigue Monitoring: A Comprehensive Survey // ACM Computing Surveys. 2024. Vol. 56, Issue 9. 221. P. 1–40. DOI: 10.1145/3648679.

66. Samandari А. М. Functional near-infrared spectroscopy (fNIRS) as a hybrid system: a review // Modeling, Optimization and Information Technology. 2024. Vol. 12 (1). P. 1–18. DOI: 10.26102/2310-6018/2024.44.1.005.

67. Marinelli A., Canepa M., Domenico D. D. [et al.]. A comparative optimization procedure to evaluate pattern recognition algorithms on hannes prosthesis // Neurocomputing. 2024. Vol. 569 (7). 127123. DOI: 10.1016/j.neucom.2023.127123.


Рецензия

Для цитирования:


Самандари А.М. Перспективные системы для управления протезами: обзор. Омский научный вестник. 2024;(4):150-160. https://doi.org/10.25206/1813-8225-2024-192-150-160. EDN: ANKBHV

For citation:


Samandari A.M. Promising systems for controlling prosthetics: a review. Omsk Scientific Bulletin. 2024;(4):150-160. https://doi.org/10.25206/1813-8225-2024-192-150-160. EDN: ANKBHV

Просмотров: 14

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)