Preview

Omsk Scientific Bulletin

Advanced search

Simulation of the effect of absorption by atmospheric water vapor on the results of non-contact temperature measurements

https://doi.org/10.25206/1813-8225-2023-187-131-139

EDN: UDPJPE

Abstract

The article investigates the effect of atmospheric water vapor on the results of noncontact temperature measurements carried out in the range from 100 to 600 °C. It is known that the key disadvantage of radiation thermometry is a rather strong dependence of the measurement results on external factors: the state of the surface of the object, as well as the state of the environment for the propagation of radiation from the object to the thermometer. Water vapor constantly present in the atmosphere selectively absorbs the infrared radiation of the object, which leads to underestimation of the results. This effect depends on the humidity and temperature of the air, as well as on the distance between the object and the radiation thermometer. On the basis of the simulation performed using the MATLAB system and the HITRAN molecular spectroscopy database, the values of random and systematic errors are calculated for four measurement situations typical of industrial conditions that differ in the level of absorption by water vapor. Eleven variants of radiation receivers with unique spectral sensitivity characteristics are studied. It is shown that the effect of absorption of the infrared radiation of an object by water vapor can lead to a significant decrease in the reliability of measurements carried out even at short distances.

About the Authors

A. B. Ionov
Omsk State Technical University
Russian Federation

IONOV Anton Borisovich, Candidate of Technical
Sciences, Associate Professor of Radio Devices and
Diagnostic Systems Department

Omsk

AuthorID (RSCI): 518556

AuthorID (SCOPUS): 55899469100



N. S. Chernysheva
Omsk State Technical University
Russian Federation

CHERNYSHEVA Nadezhda Sergeyevna, Graduate Student of Radio Devices and Diagnostic Systems Department

Omsk

AuthorID (RSCI): 909195

Author ID (SCOPUS): 56211164700



B. M. Ionov
Omsk State Technical University
Russian Federation

IONOV Boris Petrovich, Candidate of Technical Sciences, Associate Professor of Radio Devices and Diagnostic Systems Department

Omsk

AuthorID (SCOPUS): 6603024036



M. A. Ryabova
Omsk State Technical University
Russian Federation

RYABOVA Mariya Anatolyevna, Undergraduate gr. PRm-211 of Elite Education and Magistracy Faculty

Omsk



References

1. Lu Y. Industry 4.0: A survey on technologies, applications and open research issues // Journal of Industrial Information Integration. 2017. Vol. 6. P. 1–10. DOI: 10.1016/j.jii.2017.04.005. (In Engl.).

2. Huang Z., Shen Y., Li J., Fey M., Brecher C. AI-Driven Digital Twins. Sensors. 2021. Vol. 21, no. 6340. P. 1–35. DOI: 10.3390/s21196340. (In Engl.).

3. Taymanov R., Pronin A., Sapozhnikova K. [et al.]. Actual measuring technologies of Industry 4.0 and analysis of their realization experience. Journal of Physics: Conference Series. 2019. Vol. 1379, no. 012049. P. 1–8. DOI: 10.1088/17426596/1379/1/012049. (In Engl.).

4. Sapozhnikova K., Pronin A., Taymanov R. Increasing Measurement Trustworthiness as a Necessary Part of Technology Development // Sensors & Transducers. 2021. Vol. 251, Issue 4. P. 61–69. (In Engl.).

5. Taymanov R., Sapozhnikova K., Prokopchina S. What is immeasurable make measurable with artificial intelligence (measurements & artificial intelligence) // Measurement: Sensors. 2021. Vol. 18, no. 100316. P. 1–4. DOI: 10.1016/j.measen.2021.100316. (In Engl.).

6. Vavilov V. P. Infrakrasnaya termografiya i teplovoy kontrol’ [Infrared thermography and thermal control]. Moscow, 2009. 544 p. ISBN 978-5-904270-05-6. (In Russ.).

7. Gossorg Zh. Infrakrasnaya termografiya. Osnovy, tekhnika, primenenie: per. s frants [Infrared thermography. Fundamentals, technique, application: trans. from French]. Moscow, 1988. 416 p. ISBN 5-03-000915-9. (In Russ.).

8. Zang Z. M., Tsai B. K., Machin G. Radiometric Temperature Measurements: I. Fundamentals. Vol. 42. Experimental Methods in the Physical Sciences. Publisher: Academic Press, 2009. 376 p. (In Engl.).

9. Chernysheva N. S., Ionov A. B., Ionov B. P. The Main Principles of Development of an Intelligent Multi-Channel Radiation Thermometer // 21st International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), June 29–July 03, 2020. Chemal, Russia, 2020. P. 226–233. DOI: 10.1109/EDM49804.2020.9153495. (In Engl.).

10. Chernysheva N. S., Ionov B. P., Ionov A. B. Diagnostika izmeritel’noy situatsii pri beskontaktnykh izmereniyakh temperatury v slozhnykh usloviyakh [Diagnosis of the difficult measuring situation of non-contact temperature measurements] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2016. № 6 (150). P. 147–151. (In Russ.).

11. Ionov A. B. Metrological Problems of Pyrometry: an Analysis and the Prospects for Solving Them // Measurement Techniques. 2013. Vol. 56, no. 6. P. 658–663. (In Engl.).

12. Minkina W., Klecha D. Atmospheric transmission coefficient modeling in the infrared for thermovision measurements // J. Sens. Sens. Syst. 2016. Vol. 5. P. 17–23. DOI: 10.5194/jsss-517-2016. (In Engl.).

13. Ionov A. B. Sintez malokanal’nykh sistem pirometricheskogo monitoringa ob”yektov s temperaturoy 200...800°S [Synthesizing low-channel systems for pyrometrical monitoring of items at a temperature of 200 to 800°C] // Mir izmereniy. Measurements World. 2012. No. 10 (140). P. 42–47. (In Russ.).

14. Timofeyev Yu. M., Vasil’yeva A. V. Teoreticheskiye osnovy atmosfernoy optiki [Theoretical Foundations of Atmospheric Optics]. Saint Petersburg, 2003. 474 p. ISBN 5-02-024976-9. (In Russ.).

15. Gordon I. E., Rothman L. S., Hill C. [et al.] The HITRAN2016 molecular spectroscopic database // Journal of Quantitative Spectroscopy and Radiative Transfer. 2016. Vol. 203. P. 3–69. DOI: 10.1016/j.jqsrt.2017.06.038. (In Engl.).

16. Patent 2261502 Russian Federation, IPC H 01 L 33/00, 31/101, 31/12. Fotolyuminestsentnyy izluchatel′, poluprovodnikovyy fotoelement i optron na ikh osnove [Photoluminescent emitter, semiconductor element and optron based on Said devices] / Gorbunov N. I., Varfolomeev S. P., Dijkov L. K., Marakhonov V. M., Medvedev F. K. No. 2004104374/28. (In Russ.).

17. Anisimova N. P., Kulagov V. B., Luganskiy Yu. M. Promyshlennyye nizkotemperaturnyye pirometry spektral′nogo otnosheniya [Industrial especially low-temperature color pyrometers] // Prikladnaya fizika. Applied Physics. 2015. No. 6. P. 83–86. (In Russ.).

18. Minkina W., Dudzik S. Infrared Thermography. Errors and Uncertainties. New York: John Wiley & Sons, 2009. 212 p. ISBN 978-0-470-74718-6. (In Engl.).

19. Fomin B. A., Kolokutin G. E. Novaya spektroskopicheskaya baza HITRAN-2016 v polineynykh modelyakh, primenyayemykh v distantsionnom zondirovanii Zemli metodami infrakrasnoy spektrometrii [New HITRAN-2016 spectroscopic database for lineby-line models used in remote sensing of the earth by infrared spectrometry] // Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. Current Problems in Remote Sensing of the Earth from Space. 2019. Vol. 16, no. 1. P. 17–24. (In Russ.).

20. Chernysheva N. S., Ionov B. P., Ionov A. B. Eksperimental′naya ustanovka dlya izucheniya vliyaniya zapylennosti na beskontaktnyye izmereniya temperatury [Experimental setup for studying the effect of dustiness in case of non-contact temperature measurements] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2018. No. 2 (158). P. 110–115. DOI: 10.25206/1813-8225-2018-158-110-115. (In Russ.).


Review

For citations:


Ionov A.B., Chernysheva N.S., Ionov B.M., Ryabova M.A. Simulation of the effect of absorption by atmospheric water vapor on the results of non-contact temperature measurements. Omsk Scientific Bulletin. 2023;(3):131-139. (In Russ.) https://doi.org/10.25206/1813-8225-2023-187-131-139. EDN: UDPJPE

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)