Overcoming dead-end situations of synthesis of motions of anthropomorphic robots on the basis of the use of motions of the clutch axis along the linear surface limiting the body angle of service
https://doi.org/10.25206/1813-8225-2024-191-14-21
EDN: EJWCZR
Abstract
An algorithm for synthesizing hand motions of anthropomorphic robots by velocity vector during the installation of objects of manipulation given, in the form of rectangular prisms in a container, is proposed. The algorithm makes it possible to solve deadlock situations in computer simulation of motions. The essence of the method consists in the use of hand motions, at which the axis of the clash carrier moves and forms with some approximation a rulered surface, which specifies the body angle of service. For this purpose, it is proposed to use a database of configurations that specify certain positions of the output link centre and of the accumulation carrier axes which coincide with the above-mentioned line surfaces. The results of calculations of intermediate configurations in computer modeling of motions of anthropomorphic robots in an organized environment using the developed algorithm are presented.
About the Author
F. N. PritykinRussian Federation
Pritykin Fedor Nikolayevich - Doctor of Technical Sciences, Professor, Professor of Engineering Geometry and CAD Department, SPIN-code: 7628-8023. AuthorID (SCOPUS): 6507269253.
Omsk
References
1. Afonin V. L. Intellektual’nyye robototekhnicheskiye sistemy [Intelligent robotic systems]. Moscow, 2005. 208 p. ISBN 5-9556-0024-8. (In Russ.).
2. Makarov I. M., Lokhin V. M., Manko S. V. [et al.]. Intellektual’nyye robototekhnicheskiye sistemy: tendentsii razvitiya i problemy razrabotki. Ch. 1 [Intelligent robotic systems: development trends and design challenges. Part 1] // Mekhatronika, avtomatizatsiya, upravleniye. Mekhatronika, Avtomatizatsiya, Upravlenie. 2004. No. 9. P. 24–26. (In Russ.).
3. Shcherbatov I. A. Intellektual’noye upravleniye robototekhnicheskimi sistemami v usloviyakh neopredelennosti [Intellectual management of robotics systems in the conditions of uncertainty] // Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravleniye, vychislitel’naya tekhnika i informatika. Vestnik of Astrakhan State Technical University. Series: Management, Computer Science and Informatics. 2010. No. 1. P. 73–77. EDN: KYTLCD. (In Russ.).
4. Yushchenko A. S. Intellektual’noye planirovaniye v deyatel’nosti robotov [Intelligent planning in robot activities] // Mekhatronika, avtomatizatsiya, upravleniye. Mekhatronika, Avtomatizatsiya, Upravlenie. 2005. No. 3. P. 5–18. EDN: YKBZOZ. (In Russ.).
5. Whitney D. E. The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators // Journal of Dynamic Systems, Measurement, and Control. 2010. No. 94 (4). P. 303–309. (In Engl.).
6. Kobrinskiy A. A. Manipulyatsionnyye sistemy robotov [Robot manipulation systems]. Moscow, 1985. 343 p. (In Russ.).
7. Korendyasev A. I., Salamandra B. L., Tyves L. I. Manipulyatsionnyye sistemy robotov [Manipulation systems of robots]. Moscow, 1989. 472 p. ISBN 5-217-00461-4. (In Russ.).
8. Pritykin F. N., Nebritov V. I. Opredeleniye sfericheskoy krivoy, zadayushchey ugol servisa ruki androidnogo robota metodom sinteza malykh dvizheniy [Determination of spherical curve defining the angle of service of android robot arm by method of small motions synthesis] // Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoye i energeticheskoye mashinostroyeniye. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering. 2018. Vol. 2, no. 3. P. 71–75. DOI: 10.25206/25880373-2018-2-3-71-76. EDN: YMCQKL. (In Russ.).
9. Zhdanov D. S., Kosteley Ya. V., Khokhlova L. A. [et al.]. Opyt resheniya obratnoy zadachi kinematiki dlya manipulyatorov antropomorfnogo mekhanizma AR-600 [Experience in solving the inverse problem of kinematics for manipulators of anthropomorphic mechanism AR-600] // Intellektual’nyye sistemy 4-y promyshlennoy revolyutsii. Intelligent Systems of the 4th Industrial Revolution. Tomsk, 2020. P. 81–84. EDN: ASSESJ. (In Russ.).
10. Pritykin F. N. Virtual’noye modelirovaniye dvizheniy robotov, imeyushchikh razlichnuyu strukturu kinematicheskikh tsepey [Virtual modeling of robot movements with different kinematic chain structure]. Omsk, 2014. 172 p. ISBN 978-5-8149-1693-8. (In Russ.).
11. Pritykin F. N., Nebritov V. I. Issledovaniye razmerov i formy oblasti v mnogomernom prostranstve obobshchлnnykh skorostey, zadayushchey dopustimyye mgnovennyye sostoyaniya mekhanizma androidnogo robota [The study of size and shape of area in multidimensional space of generalized velocities defining permissible instantaneous state of android robot mechanism] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2016. No. 5 (149). P. 29–34. EDN: WXHOXP. (In Russ.).
12. Eskenin R. N. Geometricheskoye modelirovaniye i optimizatsiya protsessov upravleniya adaptivnym promyshlennym robotom [Geometric modeling and optimization of control processes of adaptive industrial robot]. Omsk, 2010. 20 p. (In Russ.).
13. Gordeyev O. I. Issledovaniye formy i polozheniya oblastey v mnogomernom prostranstve zadannykh dopustimykh znacheniy vektora obobshchennykh skorostey ploskogo semizvennogo manipulyatora [Study of the shape and position of regions in the multidimensional space of given admissible values of the vector of generalized velocities of a flat seven-link manipulator] // Informatsionnyye tekhnologii v nauke i proizvodstve. Information Technologies in Science and Production. Omsk, 2015. P. 216–222. EDN: TQFXIX. (In Russ.).
14. Lebedev P. A. Analiticheskiy metod opredeleniya koeffitsiyenta servisa manipulyatora [Analytical method for determining the manipulator service factor] // Problemy mashinostroyeniya i nadezhnosti mashin. Journal of Machinery Manufacture and Reliability. 1991. No. 5. P. 93–98. (In Russ.).
15. Nebritov V. I. Opredeleniye maksimal’nykh znacheniy parametrov zadayushchikh ugol servisa i mnozhestvo konfiguratsiy androidnogo robota realizatsiyey mgnovennykh sostoyaniy [Determination of maximum values of parameters setting the service angle and set of android robot configurations by instantaneous state realization] // Informatsionnyye tekhnologii v nauke i proizvodstve. Information Technologies in Science and Production. Omsk, 2016. P. 215–220. (In Russ.).
16. Pritykin F. N., Nebritov V. I. Konstruirovaniye lineychatykh poverkhnostey ogranichivayushchikh oblast’ dopustimykh polozheniy zven’yev mekhanizmov manipulyatorov pri realizatsii mgnovennykh sostoyaniy [Graphic optimization model of the process of welding products by a robot based on radishchev blueprint] // Programmnyye sistemy i vychislitel’nyye metody. Software Systems and Computational Methods. 2021. No. 2. P. 74–90. DOI: 10.7256/2454-0714.2021.2.35574. EDN: ZNYZKL. (In Russ.).
Review
For citations:
Pritykin F.N. Overcoming dead-end situations of synthesis of motions of anthropomorphic robots on the basis of the use of motions of the clutch axis along the linear surface limiting the body angle of service. Omsk Scientific Bulletin. 2024;(3):14-21. (In Russ.) https://doi.org/10.25206/1813-8225-2024-191-14-21. EDN: EJWCZR
JATS XML




















