Preview

Omsk Scientific Bulletin

Advanced search

Study of the magnetic field effect on partial discharges characteristics

https://doi.org/10.25206/1813-8225-2024-191-110-116

EDN: HVMHTV

Abstract

The paper is devoted to the study of the dependences of the characteristics of partial discharges on magnetic induction. The design of the experimental setup has been developed. It allows applying both high voltage and current comparable to the operating one. The setup includes a high voltage source (dielectric tester), a current flow circuit, a high voltage current transformer and a sample of XLPE insulated cable. The operation of the electrical circuit of the experimental setup is simulated using software. The modeling has shown that if the operational electrical strength of the current transformer insulation is present, the high-voltage potential cannot contact the current flow circuit. After this, modeling of the magnetic field inside the insulating layer is carried out. Based on the developed design, an experimental setup is created. To record partial discharges, an artificial defect is created in a cable sample. The results of magnetic field modeling made it possible to estimate the magnetic induction in the field of an artificial cable defect. Next, experimental studies are carried out to assess the influence of the magnetic field of the cable core current on the characteristics of partial discharges. The measurement results have showed a decrease in the average apparent charge of partial discharges and partial discharge power with increasing current. In addition, waveforms are compared, but no significant differences are found. The magnetic field of the current may influence the PD performance in the long term due to its possible influence on the direction of growth of the electrical tree structure.

About the Authors

D. A. Polyakov
Omsk State Technical University
Russian Federation

Polyakov Dmitry Andreevich, Senior Lecturer of Theoretical and General Electrical Engineering Department, Omsk State Technical University (OmSTU).

SPIN-code: 2004-2148. AuthorID (RSCI): 733001. AuthorID (SCOPUS): 56825433300.

Omsk



M. A. Kholmov
Omsk State Technical University
Russian Federation

Kholmov Mikhail Alexandrovich - Undergraduate, gr. ЭЭм-213 of Theoretical and General Electrical Engineering Department, OmSTU, SPIN-code: 2561-3270 AuthorID (RSCI):1087396.

Omsk



K. I. Nikitin
Omsk State Technical University
Russian Federation

Nikitin Konstantin Ivanovich - Doctor of Technical Sciences, Associate Professor, Dean of Theoretical and General Electrical Engineering Department, OmSTU, SPIN-code: 3733-8763. AuthorID (RSCI): 641865. AuthorID (SCOPUS): 56825489500.

Omsk



References

1. Li G., Luo Z., Xiong J. [et al.]. Statistical characteristics of partial discharge caused by typical defects in cable joint under oscillating voltage // 2014 International Conference on Power System Technology. China, 2014. P. 1368–1373. DOI: 10.1109/POWERCON.2014.6993672. (In Engl.).

2. Zhao X., Pu L., Ju Z. [et al.]. Partial discharge characteristics and development of typical XLPE power cable insulation defects // 2016 International Conference on Condition Monitoring and Diagnosis (CMD). China, 2016. P. 623–626. DOI: 10.1109/CMD.2016.7757955. (In Engl.).

3. Kim C., Jin Z., Jiang P. [et al.]. Investigation of dielectric behavior of thermally aged XLPE cable in the high-frequency range // Polymer Testing. 2006. Vol. 25, no. 4. P. 553–561. DOI: 10.1016/j.polymertesting.2006.03.009. (In Engl.).

4. Boggs S. A. Mechanisms for degradation of TR-XLPE impulse strength during service aging // IEEE Power Engineering Review. 2002. Vol. 17, no. 2. P. 308–312. DOI: 10.1109/MPER.2002.4312059. (In Engl.).

5. Tao W., Song S., Zhang Y. [et al.]. Study on the electric-field characteristics of water tree region on the dry or wet condition in XLPE cables // 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE). 2016. P. 1–4. DOI: 10.1109/ICHVE.2016.7800763. (In Engl.).

6. Chen G., Tham C. H. Electrical treeing characteristics in XLPE power cable insulation in frequency range between 20 and 500 Hz // IEEE Transactions on Dielectrics and Electrical Insulation. 2009. Vol. 16, no. 1. P. 179–188. DOI: 10.1109/TDEI.2009.4784566. (In Engl.).

7. Gulski E., Putter H., Smit J. J. Investigation of water treeing – Electrical treeing transition in power cables // 2008 International Conference on Condition Monitoring and Diagnosis. China, 2008. P. 234–237. DOI: 10.1109/CMD.2008.4580270. (In Engl.).

8. Chen X., Mantsch A. R., Gubanski S. M. [et al.]. Electrical treeing behavior of DC and thermally aged polyethylenes utilizing wire-plane electrode geometries // IEEE Transactions on Dielectrics and Electrical Insulation. 2014. Vol. 21, no. 1. P. 45–52. DOI: 10.1109/TDEI.2013.004108. (In Engl.).

9. Hauschild W., Lemke E. High-voltage test and measuring techniques. 2014. 505 p. (In Engl.).

10. Knenicky M., Prochazka R., Hlavacek J. Partial Discharge Patterns during Accelerated Aging of Medium Voltage Cable System // 2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE). Greece, 2018. P. 1–4. DOI: 10.1109/ICHVE.2018.8641847. (In Engl.).

11. Yuan Y., Lu G., Wang W. [et al.]. Dielectric loss and partial discharge test analysis of 10 kV XLPE cable // 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. China, 2013. P. 124–127. DOI: 10.1109/CEIDP.2013.6747414. (In Engl.).

12. Ahmed Z., Hussain G. A., Lehtonen M. [et al.]. Analysis of partial discharge signals in medium voltage XLPE cables // 2016 17th International Scientific Conference on Electric Power Engineering (EPE). Czech Republic, 2016. P. 1–6. DOI: 10.1109/EPE.2016.7521817. (In Engl.).

13. Korobeynikov S. M., Ridel A. V., Medvedev D. A. [et al.]. Registration and simulation of partial discharges in free bubbles at AC voltage // IEEE Transactions on Dielectrics and Electrical Insulation. 2019. Vol. 26, no. 4. P. 1035–1042. DOI: 10.1109/TDEI.2019.007808. (In Engl.).

14. Gómez F. Á., Albarracín-Sánchez R., Garnacho F. [et al.]. Diagnosis of insulation condition of mv switchgears by application of different partial discharge measuring methods and sensors // Sensors. 2018. Vol. 18, no. 3. P. 1–20. DOI: 10.3390/s18030720. (In Engl.).

15. Deshpande A. S., Mangalvedekar H. A., Cheeran A. N. Partial discharge analysis using energy patterns // International Journal of Electrical Power & Energy Systems. 2013. Vol. 53. P. 184–195. DOI: 10.1016/j.ijepes.2013.04.015. (In Engl.).

16. Liu S., Wang Y., Tian F. Prognosis of Underground Cable via Online Data-Driven Method with Field Data // IEEE Transactions on Industrial Electronics. 2015. Vol. 62, no. 12. P. 7786–7794. DOI: 10.1109/TIE.2015.2458300. (In Engl.).

17. Bruning F. J., Campell A. M., Campbell F. J. [et al.]. Insulation aging from simultaneous mechanical strain, polymerchemical, and temperature interactions in // Conference Record of the 1992 IEEE International Symposium on Electrical Insulation. 1992. P. 74–78. DOI: 10.1109/ELINSL.1992.247048. (In Engl.).

18. Celina M., Gillen K. T., Assink R. A. Accelerated aging and lifetime prediction: Review of non-Arrhenius behavior due to two competing processes // Polymer Degradation and Stability. 2005. Vol. 90, no. 3. P. 395–404. DOI: 10.1016/j.polymdegradstab.2005.05.004. (In Engl.).


Review

For citations:


Polyakov D.A., Kholmov M.A., Nikitin K.I. Study of the magnetic field effect on partial discharges characteristics. Omsk Scientific Bulletin. 2024;(3):110-116. (In Russ.) https://doi.org/10.25206/1813-8225-2024-191-110-116. EDN: HVMHTV

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)