Modeling and calculation of temperature distribution along the length of a wire studying problems the capacity of power transmission lines near contact connections
https://doi.org/10.25206/1813-8225-2024-191-117-124
EDN: KVLAQX
Abstract
The article has obtained an analytical solution to the thermal conductivity equation for the contact connection of long sections of overhead lines, and also considered the case for a line with two short and two long sections, which makes it possible to take into account distributed defects and clamp sizes. The application of the obtained mathematical model to determine the temperature of an overhead power line near contact connections is shown. A comparative analysis of the temperature values in the power line, calculated using the created mathematical model, with published data obtained based on finite element modeling using the results of a physical experiment is performed. It has been shown that heating of contact connections can significantly limit the throughput of lines even at an acceptable level of contact resistance. This makes relevant the tasks of calculating the temperature of contact connections of power lines and clarifying permissible currents taking into account the influence of transient contact resistances.
About the Authors
V. M. TrotsenkoRussian Federation
Trotsenko Vladislav Mikhaylovich - Senior Lecturer of Power Supply for Industrial Enterprises Department, OmSTU, SPIN-code: 3958-5882. AuthorID (RSCI): 889516.
Omsk
S. S. Girshin
Russian Federation
Girshin Stanislav Sergeyevich - Candidate of Technical Sciences, Associate Professor, Associate Professor of Power Supply for Industrial Enterprises Department, OmSTU, SPIN-code: 1125-1521. AuthorID (RSCI): 297584. AuthorID (SCOPUS): 57190579930.
Omsk
E. V. Petrova
Russian Federation
Petrova Elena Vladimirovna - Senior Lecturer of Power Supply for Industrial Enterprises Department, OmSTU, SPIN-code: 2750-7350. AuthorID (RSCI): 685250.
Omsk
V. N. Goryunov
Russian Federation
Goryunov Vladimir Nikolayevich, Doctor of Technical Sciences, Professor, Head of Power Supply for Industrial Enterprises Department, OmSTU, SPIN-code: 2765-2945. AuthorID (RSCI): 302109. AuthorID (SCOPUS): 7003455231.
Omsk
D. G. Safonov
Russian Federation
Safonov Dmitriy Gennadyevich - Candidate of Technical Sciences, Associate Professor, Associate Professor of Power Supply for Industrial Enterprises Department, OmSTU, SPIN-code: 5090-2754. AuthorID (RSCI): 685258.
Omsk
References
1. Fan F., Bell K., Infield D. Transient-state real-time thermal rating forecasting for overhead lines by an enhanced analytical method // Electric Power Systems Research. 2018. Vol. 167. P. 213–221. DOI: 10.1016/j.epsr.2018.11.003. (In Engl.).
2. Petrova E. V., Girshin S. S., Krivolapov V. A., Goryunov V. N., Trotsenko V. M. Analiz dlitel’no dopustimykh tokov i poter’ aktivnoy moshchnosti v vozdushnykh liniyakh elektroperedachi s uchetom klimaticheskikh faktorov [The analysis of continuous admissible currents and active power losses in overhead power lines taking into account climatic factors] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2023. No. 4 (188). P. 84–92. DOI: 10.25206/1813-8225-2023-188-84-92. EDN: WQGZWB (In Russ.).
3. Vorotnitsky V. E., Mogilenko A. V. Snizheniye poter’ elektroenergii v raspredelitel’nykh elektricheskikh setyakh: cravnitel’nyy analiz zarubezhnogo i otechestvennogo opyta [Reducing electricity losses in electrical distribution networks: comparative analysis of foreign and domestic experience]. Moscow, 2023. 308 p. ISBN 978-5-9729-1388-6. (In Russ.).
4. Martinez R., Manana M., Arroyo A. [et al.]. Dynamic Rating Management of Overhead Transmission Lines Operating under Multiple Weather Conditions // Energies. 2021. Vol. 14, no 4. P. 59–63. DOI: 10.3390/en14041136. (In Engl.).
5. Trotsenko V. M., Girshin S. S., Petrova E. V. [et al.]. Matematicheskaya model’ teplovogo rezhima vozdushnoy linii elektroperedachi s uchetom izmeneniya temperatury po dline [Mathematical model of the thermal mode of overhead power lines considering temperature variations along the line length] // iPolytech Journal. iPolytech Journal. 2022. No. 26 (3). P. 519–531. DOI: 10.21285/1814-3520-2022-3-519-531. EDN: TNXREJ. (In Russ.).
6. Trotsenko V. M. Analiz temperatury i sravneniye poter’ aktivnoy moshchnosti v nestatsionarnom i statsionarnom teplovom rezhime vozdushnykh liniy elektroperedachi [Temperature analysis and comparison of active power losses in non-stationary and stationary thermal conditions of overhead power lines] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2023. No. 4 (188). P. 93–99. DOI: 10.25206/1813-8225-2023-188-93-99. EDN: WIGOVE. (In Russ.).
7. Yingai J., Mingyu Q., Shijuan Y. [et al.]. Analysis of overhead transmission lines fusing failure due to poor contact between conductors and clamps // Engineering Failure Analysis. 2020. No. 118. P. 104858. DOI: 10.1016/j.engfailanal.2020.104858. (In Engl.).
8. Chengzeng Y., Dasheng W., Gang W. Three-dimensional finite discrete element-based contact heat transfer model considering thermal cracking in continuous–discontinuous media // Computer Methods in Applied Mechanics and Engineering. 2022. Vol. 388. P. 114228. DOI: 10.1016/j.cma.2021.114228. (In Engl.).
9. Zainuddin N. M., Rahman M. S. Abd., Ab Kadir M. Z. A. [et al.]. Review of Thermal Stress and Condition Monitoring Technologies for Overhead Transmission Lines: Issues and Challenges // IEEE Access. 2020. Vol. 8. P. 120053-120081, DOI: 10.1109/ACCESS.2020.3004578. (In Engl.).
10. Pravila ustroystva elektroustanovok [Rules of the device of electrical installations.]. Moscow, 2023. 512 p. ISBN 978-5-04-192789-9. (In Russ.).
Review
For citations:
Trotsenko V.M., Girshin S.S., Petrova E.V., Goryunov V.N., Safonov D.G. Modeling and calculation of temperature distribution along the length of a wire studying problems the capacity of power transmission lines near contact connections. Omsk Scientific Bulletin. 2024;(3):117-124. (In Russ.) https://doi.org/10.25206/1813-8225-2024-191-117-124. EDN: KVLAQX
JATS XML



















