Impedance of a flow-through measuring electrochemical cell with a system of planar interdigitated microelectrodes
https://doi.org/10.25206/1813-8225-2024-191-133-141
EDN: TQIHST
Abstract
The article considers a flow-through electrochemical cell with planar interdigitated microelectrodes intended for impedance studies of liquids. To assess the influence of the cell height and geometric parameters of the interdigitated microelectrodes on the cell impedance, an analytical approach is proposed that uses several levels of modeling electrochemical processes in the cell. At first, an elementary two-dimensional subdomain is distinguished in the cell structure, for which the potential distribution is determined by solving the differential equation of electrical conductivity. Using the obtained potential distribution, the linear parameters of the elementary subdomain, its linear resistance and linear capacitance are determined, on the basis of which the resistance and capacitance of the interdigitated microelectrode system are found. The impedance of an electrochemical cell with interdigitated microelectrodes is determined using its equivalent electrical circuit, which includes the resistance and capacitance of the interdigitated microelectrode system, the capacitance of the double electric layer on the surface of each microelectrode, and the resistances of the interdigitated microelectrode leads. Using the expression for the impedance of the electrochemical cell, its Nyquist and Bode diagrams are determined for different values of the cell height and geometric parameters of the interdigitated microelectrode system. The presented approach can be used to analyze processes in a flow-through electrochemical cell with interdigitated microelectrodes, its design, and the development of methodological support for impedance studies of liquid substances with help of it.
Keywords
About the Authors
A. G. KozlovRussian Federation
Kozlov Aleksandr Gennadyevich - Doctor of Technical Sciences, Associate Professor, Professor of Radio Devices and Diagnostic Systems Department, OmSTU, SPIN-code: 5602-8275. AuthorID (RSCI): 28476. AuthorID (SCOPUS) 35616609300. ResearcherID: A-5997-2014.
Omsk
E. A. Fadina
Russian Federation
Fadina Elena Aleksandrovna -Senior Lecturer of Radio Devices and Diagnostic Systems Department, OmSTU, SPIN-code: 7360-5447. AuthorID (RSCI): 685278. AuthorID (SCOPUS) 57193408354. ResearcherID: HKW-4525-2023.
Omsk
References
1. Lvovich V. F. Impedance spectroscopy: applications to electrochemical and dielectric phenomena. New Jersey: John Wiley & Sons, 2012. 356 p. ISBN 978-0-470-62778-5. (In Engl.).
2. Stulik K., Amatore C., Holub K. [et al.]. Microelectrodes. Definitions, characterization, and applications (Technical report) // Pure and Applied Chemistry. 2000. Vol. 72. P. 1483–1492. DOI: 10.1351/pac200072081483. (In Engl.).
3. Olthuis W., Streekstra W., Bergveld P. Theoretical and experimental determination of cell constants of planarinterdigitated electrolyte conductivity sensors // Sensors and Actuators B: Chemical. 1995. Vol. 24. P. 252–256. DOI: 10.1016/0925-4005(95)85053-8. (In Engl.).
4. Timmer B., Sparreboom W., Olthuis W. [et al.]. Optimization of an electrolyte conductivity detector for measuring low ion concentrations // Lab on a Chip. 2002. Vol. 2. P. 121–124. DOI: 10.1039/B201225A. (In Engl.).
5. Lvovich V. F., Liu C. C., Smiechowski M. F. Optimization and fabrication of planar interdigitated impedance sensors for highly resistive non-aqueous industrial fluids // Sensors and Actuators B: Chemical. 2006. Vol. 119. P. 490–496. DOI: 10.1016/j.snb.2006.01.003. (In Engl.).
6. den Otter M. W. Approximate expressions for the capacitance and electrostatic potential of interdigitated electrodes // Sensors and Actuators A: Physical. 2002. Vol. 96. P. 140-144. DOI: 10.1016/S0924-4247(01)00783-X. (In Engl.).
7. Igreja R., Dias C. J. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure // Sensors and Actuators A: Physical. 2004. Vol. 112. P. 291–301. DOI: 10.1016/j.sna.2004.01.040. (In Engl.).
8. Igreja R., Dias C. J. Extension to the analytical model of the interdigital electrodes capacitance for a multi-layered structure // Sensors and Actuators A. Physical. 2011. Vol. 172. P. 392–399. DOI: 10.1016/j.sna.2011.09.033. (In Engl.).
9. Yang L., Li Y., Griffis C. L. [et al.]. Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium // Biosensors and bioelectronics. 2004. Vol. 19. P. 1139–1147. DOI: 10.1016/j.bios.2003.10.009. (In Engl.).
10. Ibrahim M., Claudel J., Kourtiche D. [et al.]. Physical and electrical modeling of interdigitated electrode arrays for bioimpedance spectroscopy // New Developments and Applications in Sensing Technology. 2011. P. 169–189. DOI: 10.1007/978-3-642-17943-3_9. (In Engl.).
11. Ibrahim M., Claudel J., Kourtiche D. [et al.]. Geometric parameters optimization of planar interdigitated electrodes for bioimpedance spectroscopy // Journal of Electrical Bioimpedance. 2013. Vol. 4. P. 13–22. DOI: 10.5617/jeb.304. (In Engl.).
12. Ngo T. T., Shirzadfar H., Kourtiche D. [et al.]. A planar interdigital sensor for bio-impedance measurement: Theoretical analysis, optimization and simulation // Journal of Nanoand Electronic Physics. 2014. Vol. 6. 01011. 7 p. (In Engl.).
13. MacKay S., Hermansen P., Wishart D. [et al.]. Simulations of interdigitated electrode interactions with gold nanoparticles for impedance-based biosensing applications // Sensors. 2015. Vol. 15. P. 22192–22208. DOI: 10.3390/s150922192. (In Engl.).
14. McNealy B. E., Jiang J., Hertz J. L. A precise, reducedparameter model of thin film electrolyte impedance // Journal of The Electrochemical Society. 2015. Vol. 162. P. F537–F546. DOI: 10.1149/2.0281506jes. (In Engl.).
15. Blume S. O. P., Ben-Mrad R., Sullivan P. E. Modelling the capacitance of multi-layer conductor-facing interdigitated electrode structures // Sensors and Actuators B: Chemical. 2015. Vol. 213. P. 423–433. DOI: 10.1016/j.snb.2015.02.088. (In Engl.).
16. Dias C. J., Igreja R. A method of recursive images to obtain the potential, the electric field and capacitance in multilayer interdigitated electrode (IDE) sensors // Sensors and Actuators A: Physical. 2017. Vol. 256. P. 95–106. DOI: 10.1016/j.sna.2017.01.021. (In Engl.).
17. Dizon A., Orazem M. E. On the impedance response of interdigitated electrodes // Electrochimica Acta. 2019. Vol. 327. 135000. 13 p. DOI: 10.1016/j.electacta.2019.135000. (In Engl.).
18. Dizon A., Orazem M. E. On experimental determination of cell constants for interdigitated electrodes // Electrochimica Acta. 2020. Vol. 337. 135732. 12p. DOI: 10.1016/j.electacta.2020.135732. (In Engl.).
19. Kozlov A. G., Fadina E. A. Analysis of electrophysical processes in system of interdigitated microelectrodes used in microchannels // 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). 2016. P. 1–5. DOI: 10.1109/ Dynamics.2016.7819032. (In Engl.).
Review
For citations:
Kozlov A.G., Fadina E.A. Impedance of a flow-through measuring electrochemical cell with a system of planar interdigitated microelectrodes. Omsk Scientific Bulletin. 2024;(3):133-141. (In Russ.) https://doi.org/10.25206/1813-8225-2024-191-133-141. EDN: TQIHST
JATS XML




















