Preview

Omsk Scientific Bulletin

Advanced search

Development method of determining angle of the railway contact network support inclination

https://doi.org/10.25206/1813-8225-2024-191-157-164

EDN: GIQHAU

Abstract

This paper discusses a new method for measuring and calculating the angle of inclination of a railway support or a contact network support, using an unmanned aerial vehicle flying along a straight path, parallel to the railway track. A review of existing measurement methods is carried out, their advantages and disadvantages are indicated. In the method under consideration, it is proposed to measure angles and distances with six laser scanning rangefinders installed in threes on horizontal and inclined planes on an unmanned aerial vehicle. This allows you to increase the speed and accuracy of determining the angle of inclination of vertical supports. The calculations use the minimum distances from the laser scanning range finder to the top and bottom of the support surface. The formulas use geometric relationships and the cosine theorem to calculate the roll of supports taking into account their taper. Measuring distances and angles three times allows for averaging over them, which significantly increases the accuracy of calculations. A model experiment is carried out on a model of a reinforced concrete contact network support in four orientations. A comparison is made between theoretically calculated and experimentally measured distances and inclination angles. The accuracy of parameter determination complies with regulatory requirements.

About the Authors

I. A. Shnyptev
Omsk State Transport University
Russian Federation

Shnyptev Ivan Alekseevich - Graduate Student of Theoretical Electrical Engineering Department, OSTU.

Omsk



R. S. Kurmanov
Omsk State Transport University
Russian Federation

Kurmanov Ramil Sultangareevich - Candidate of Physical and Mathematical Sciences, Associate Professor, Associate Professor of Physics and Chemistry Department, OSTU, AuthorID (RSCI): 362133. AuthorID (SCOPUS): 8453108100.

Omsk



Yu. M. Sosnovsky
Omsk State Transport University
Russian Federation

Sosnovsky Yuri Mikhailovich - Candidate of Physical and Mathematical Sciences, Associate Professor, Head of Physics and Chemistry Department, OSTU, Omsk. AuthorID (RSCI): 25109. AuthorID (SCOPUS): 57205080091. ResearcherID: AAP-2510-2021.

Omsk



A. A. Kuznetsov
Omsk State Transport University
Russian Federation

Kuznetsov Andrei Albertovich - Doctor of Technical Sciences, Professor, Head of Theoretical Electrical Engineering Department, OSTU, SPIN-code: 5259-0531. AuthorID (RSCI): 358976. AuthorID (SCOPUS): 56824984500.

Omsk



References

1. Galkin A. G., Kovalev A. A. Sovershenstvovaniye obsluzhivaniya kontaktnoy seti s uchetom protsessa razregulirovok opor [Improvement of maintenance of the contact network taking into account the process of adjustment of supports] // Nauka i transport. Modernizatsiya zheleznodorozhnogo transporta. Science and Transportation. Modernization of Railway Transport. 2009. P. 40–43. (In Russ.).

2. Aksenov N. A., Kovalev A. A. Razrabotka pribora po kontrolyu ustanovochnykh parametrov opory kontaktnoy seti [Device development under the control of attitudinal parameters of a support of a contact network] // Innovatsionnyy transport. «Innotrans» Journal. 2017. No. 4 (26). P. 49–53. DOI: 10.20291/2311-164Х-2017-4-49-53. EDN: ZXJQJH. (In Russ.).

3. Kovalev A. A. Formirovaniye upravlyayushchikh vozdeystviy na kontaktnoy seti s uchetom protsessa razregulirovok opor [Application of mobile means of diagnostics of overhead catenary supports]. Ekaterinburg, 2013. 74 p. (In Russ.).

4. Kovalev A. A., Maslov A. M., Aksenov N. A. Primeneniye mobil’nykh sredstv diagnostiki opor kontaktnoy seti [The use of mobile devices for catenary supports diagnostics] // Transport Urala. Transport of the Urals. 2018. No. 2 (57). P. 77–79. DOI: 10.20291/1815-9400-2018-2-77-79. EDN: XUFAVN. (In Russ.).

5. Pravila ustroystva i tekhnicheskoy ekspluatatsii kontaktnoy seti elektrifitsirovannykh zheleznykh dorog (TsE-868) [Electrified railways contact network design and technical operation rules (CE-868)]. Moscow, 2002. 184 p. (In Russ.).

6. Aslan M. F., Durdu A., Sabanci K. [et al.]. A Comprehensive Survey of the Recent Studies with UAV for Precision Agriculture in Open Fields and Greenhouses // Applied Sciences. 2022. Vol. 12 (3). P. 1047. DOI: 10.3390/app12031047. (In Engl.).

7. Aliyari M., Ashrafi B., Ayele Y. Z. Hazards identification and risk assessment for UAV–assisted bridge inspections // Structure and Infrastructure Engineering. 2022. Vol. 18, Issue 3. P. 412–428. DOI: 10.1080/15732479.2020.1858878. (In Engl.).

8. Vilner V. G., Laryushin V. G., Ryabokul A. S. Optiko-elektronnyye vysotomery-skorostemery na osnove poluprovodnikovykh lazerov dlya BPLA [Optoelectronic speed measuring altimeters based on semiconductor lasers for UAV] // Izvestiya vysshikh uchebnykh zavedeniy. Problemy Energetiki. Power Engineering: Research, Equipment, Technology. 2015. No. 5–6. P. 127–133. EDN: UIOYVR. (In Russ.).

9. Fisher Ch. E., Sidharthadev J. Sidharthadev Mukherjee, Lott W. A. Geographic survey system for vertical take-off and landing (VTOL) unmanned aerial vehicles (UAVs). US patent 11216015B2; filed December 26, 2019; published January 4th, 2022. (In Engl.).

10. Tang Z., Peng Y., Li J. [et al.]. UAV 3D Modeling and Application Based on Railroad Bridge Inspection // Buildings. 2024. Vol. 14 (1), Issue 26. P. 1–13. DOI: 10.3390/buildings14010026. (In Engl.).

11. Wu T. W., Yu J. Y., Chen R. P. [et al.]. Research Progress of UAV Inclined Photogrammetry Technology and Its Engineering Applications // Journal of Hunan University (Natural Sciences). 2018. Vol. 45. P. 167–172. DOI: 10.16339/j.cnki.hdxbzkb.2018.S0.030. (In Engl.).

12. Chen Y., Zhu Z., Lin Z. [et al.]. Building Surface Crack Detection Using Deep Learning Technology // Buildings. 2023. Vol. 13 (7). P. 1814. DOI: 10.3390/buildings13071814. (In Engl.).

13. Zaidi M. A., Tariq F. Revolutionizing power line inspection: automated data acquisition through autonomous UAVs in simulated environment // South Florida Journal of Development. 2023. Vol. 4, no. 3. P. 1199–1215. DOI: 10.46932/sfjdv4n3-014. (In Engl.).

14. Azeem I., Zaidi M. A. Zero-Shot Learning-Based Detection of Electric Insulators in the Wild // Machine Learning, Optimization, and Data Science. Springer, 2021. P. 213–225. DOI: 10.1007/978-3-030-95470-3_16. (In Engl.).

15. Shekhovtsov G. A. Kontrol’ prostranstvennogo polozheniya i formy vysokikh sooruzheniy bashennogo tipa [Control of spatial position and shape of tall tower-type structures]. Nizhny Novgorod, 2018. 214 p. ISBN 978-5-528-00265-1. (In Russ.).

16. Kolomoyets V. S. Sovremennyye sposoby nablyudeniy za otkloneniyem sooruzheniy bashennogo tipa ot vertikali [Modern methods of observing the deviation of tower-type structures from the vertical] // Molodezh’ i sistemnaya modernizatsiya strany. Youth and Systemic Modernization of the Country. In 3 vols. Kursk, 2021. Vol. 3. P. 73–77. EDN: FSTKSD. (In Russ.).


Review

For citations:


Shnyptev I.A., Kurmanov R.S., Sosnovsky Yu.M., Kuznetsov A.A. Development method of determining angle of the railway contact network support inclination. Omsk Scientific Bulletin. 2024;(3):157-164. (In Russ.) https://doi.org/10.25206/1813-8225-2024-191-157-164. EDN: GIQHAU

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)