The geometric predictive model of properties for systems with interval parameters
https://doi.org/10.25206/1813-8225-2024-190-15-20
EDN: AMYPII
Abstract
We consider interval geometric modeling of complex multi parametric systems having a set of parameters of different character. Some of the parameters may have interval indefiniteness. System information basis is incomplete one. The processed information depends on continuous, discrete and conventional data. Geometric model has a form of matrix and each element of it corresponds to some state of the system. Each state is described by interval function of continuous input and output parameters. The set of interval functions generates some discrete set of multidimensional surfaces in discrete space. We use this approach and our modeling algorithm to find predictive model of drape coefficient. The algorithm is based on linear approximation of numerical factors in factor spaces. Interval functions make it possible for us to vary some numerical factors within the given intervals. As an example, the interval model of fabric drape coefficient is found. Fabric thickness and closeness of texture are considered as input parameters.
About the Authors
V. Yu. YurkovRussian Federation
Yurkov Viktor Yuryevich, Doctor of Technical Sciences, Professor, Professor of Design and Technology of Light Industry Product Manufacture Department
AuthorID (RSCI): 173644
AuthorID (SСOPUS): 55857657200
Omsk
E. Yu. Dolgova
Russian Federation
Dolgova Elena Yuryevna, Candidate of Technical Sciences, Associate Professor, Associate Professor of Design and Technology of Light Industry Product Manufacture Department
AuthorID (RSCI): 313287
AuthorID (SСOPUS): 57217115107
Omsk
M. A. Chizhik
Russian Federation
Chizhik Margarita Anatolyevna, Doctor of Technical Sciences, Professor, Professor of Design and Technology of Light Industry Product Manufacture Department
AuthorID (RSCI): 474040
AuthorID (SСOPUS): 13406046300
Omsk
References
1. Diligenskiy N. V. Nechetkoye modelirovaniye i mnogokriterial’naya optimizatsiya proizvodstvennykh sistem v usloviyakh neopredelennosti: tekhnologiya, ekonomika, ekologiya [Fuzzy modeling and multicriteria optimization of production systems under conditions of uncertainty: technology, economics, ecology]. Moscow, 2004. 335 p. ISBN 5-473-00054-1. (In Russ.).
2. Kumkov S. I. Obrabotka eksperimental’nykh dannykh ionnoy provodimosti rasplavlennogo elektrolita metodami interval’nogo analiza [Processing of experimental data on ionic conductivity of a molten electrolyte using interval analysis methods] // Rasplavy. Melts. 2010. No. 3. P. 86–96. EDN: MKJTIL. (In Russ.).
3. Voshchinin A. P. Interval’nyy analiz dannykh: razvitiye i perspektivy [Interval data analysis: development and prospects] // Zavodskaya laboratoriya. Diagnostika materialov. Industrial Laboratory. Diagnostics of Materials. 2002. Vol. 68, no. 1. P. 118– 126. (In Russ.).
4. Nedosekin A. O., Abdulayeva Z. I., Aleksandrov S. V. Nechetkaya parabolicheskaya regressiya eksperimental’nykh dannykh s maloy vyborkoy [Fuzzy parabolic regression of experimental data with a small sample] // Myagkiye izmereniya i vychisleniya. Soft Measurements and Computing. 2019. No. 7 (20). P. 39–46. EDN: ILGONS. (In Russ.).
5. Levin V. I. Zadacha resheniya uravneniya v interval’noy postanovke [Solution to equation in the interval arrangement] // Vestnik Tambovskogo universiteta. Estestvennyye i tekhnicheskiye nauki. Tambov University Reports. Series: Natural and Technical Sciences. 2017. Vol. 22, no. 5. P. 1172–1178. DOI: 10.20310/1810-0198-2017-22-5-1172-1178. EDN: ZXGRMV. (In Russ.).
6. Skibitskiy N. V. Postroyeniye pryamykh i obratnykh staticheskikh kharakteristik ob”yektov po interval’nym dannym [Construction of direct and inverse static characteristics of the objects by interval data] // Zavodskaya laboratoriya. Diagnostika materialov. Industrial Laboratory. Diagnostics of Materials. 2017. Vol. 83, no. 1, part 1. P. 87–98. EDN: XUYZGV. (In Russ.).
7. Noskov S. I., Vrublevskiy I. P. Regressionnaya model’ dinamiki ekspluatatsionnykh pokazateley funktsionirovaniya zheleznodorozhnogo transporta [Railway transport functioning the regression model performance indicators dynamics] // Sovremennyye tekhnologii. Sistemnyy analiz. Modelirovaniye. Modern Technologies. System Analysis. Modeling. 2016. No. 2. P. 192–197. EDN: WHDEAX. (In Russ.).
8. Smirnova N. A., Lapshin V. V., Zamyshlyayeva V. V. [et al.]. Issledovaniye i prognozirovaniye drapiruyemosti kostyumnoplat’yevykh chistol’nyanykh tkaney [Drapery research and forecasting of costume and dress pure linen fabrics] // Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya tekstil’noy promyshlennosti. Izvestiya Vysshikh Uchebnykh Zavedenii. Seriya Teknologiya Tekstil'noi Promyshlennosti. 2021. No. 5 (395). P. 78– 82. (In Russ.).
9. Stylios G. K., Powell N. J. Engineering the drapability of textile fabrics // International Journal of Clothing Science and Technology. 2003. Vol. 15, no. 3/4. P. 211–217. DOI: 10.1108/09556220310478305. EDN: EAROAH. (In Engl.).
10. Ghith A., Hamdi T., Fayala F. Prediction of Drape Coefficient by Artifical Neural Network // Autex Research Journal. 2015. Vol. 15, no. 4. P. 266–274. DOI: 10.1515/aut-2015-0045. (In Engl.).
11. Jedda H., Ghith A., Sakli F. Prediction of fabric drape using FAST system // Journal of the Textile Institute. 2007. Vol. 98, no. 3. P. 219–225. DOI: 10.1080/00405000701463920. (In Engl.).
12. Dolgova E. Yu., Chizhik M. A., Naymankhanova Zh. M. [et al.]. Formirovaniye obuchayushchey vyborki dlya sozdaniya tsifrovykh dvoynikov tekstil’nykh materialov [Formation of a training sample for creating digital doubles of textile materials] // Izvestiya vysshikh uchebnykh zavedeniy. Tekhnologiya legkoy promyshlennosti. The News of Higher Educational Institutions. Technology of Light Industry. 2021. Vol. 53, no. 3. P. 39–40. DOI: 10.46418/0021-3489_2021_53_03_09. EDN: XIFZJG. (In Russ.).
Review
For citations:
Yurkov V.Yu., Dolgova E.Yu., Chizhik M.A. The geometric predictive model of properties for systems with interval parameters. Omsk Scientific Bulletin. 2024;10(2):15-20. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-15-20. EDN: AMYPII
JATS XML




















