Development of a methodology taking into account the temperature dependence of material properties in simulation of wear in fast-rotating pivot jewel bearing support
https://doi.org/10.25206/1813-8225-2024-190-50-58
EDN: ZNJPCY
Abstract
The pivot jewel bearing is an important node of some classes of industrial equipment; at nominal operating modes, the speed of relative rotation of the contact surfaces can reach 103 revolutions per second, while the operating time can be measured in years; under such conditions, it is necessary to take into account the wear of the contact surfaces; in this paper, a technique for modeling the dry friction wear of a fast-rotating support pair is proposed, taking into account changes in the properties of materials due to surface heating, based on solving the wear contact problem in a stationary formulation using Archard’s law; the effect of taking into account the temperature dependence of material properties in wear modeling process is demonstrated.
About the Authors
D. N. ZhuravlyovRussian Federation
Zhuravlyov Dmitriy Nikolaevich, Research Engineer of Advanced Engineering School «Digital Engineering
AuthorID (RSCI): 1169084
AuthorID (SCOPUS): 57193726167
Saint Petersburg
A. I. Borovkov
Russian Federation
Borovkov Alexey Ivanovich, Candidate of Technical Sciences, Associate Professor, Vice-Rector for Digital Transformation, Head of Advanced Engineering School «Digital Engineering
AuthorID (RSCI): 6567
AuthorID (SCOPUS): 8840090300
Saint Petersburg
References
1. Dai X., Zhang K., Tang C. Friction and wear of pivot jewel bearing on oil-bath lubrication for high rotational speed application // Wear. 2013. Vol. 302. P. 1506–1513. DOI: 10.1016/j.wear.2013.01.032. (In Engl.).
2. Popov V. L. Mekhanika kontaktnogo vzaimodeystviya i fizika treniya. Ot nanotribologii do dinamiki zemletryaseniy [Mechanics of contact interaction and physics of friction. From nanotribology to earthquake dynamics]. Moscow, 2013. 352 p. ISBN 978-5-9221-1443-1. (In Russ.).
3. Khandel’sman Yu. M. Kamnevyye opory [Stone supports]. Moscow, 1983. 152 p. (In Russ.).
4. Archard J. F., Hirst W. The wear of metals under unlubricated conditions // Proceedings of the Royal Society. 1956. Vol. 236 (1206). P. 397–410. DOI: 10.1098/rspa.1956.0144. (In Engl.).
5. Ansys Mechanical APDL Theory Reference, ANSYS Inc. URL: https://pdfslide.us/documents/ansys-mechanical-apdltheory-reference-15pdf.html?page=1 (accessed: 15.10.2023). (In Engl.).
6. Ansys Mechanical APDL Programmers Reference, ANSYS Inc. URL: https://pdfslide.net/documents/ansys-mechanical-apdlprogrammers-reference.html?page=1 (accessed: 15.10.2023). (In Engl.).
7. GOST R 57700.37-2021. Komp’yuternyye modeli i modelirovaniye. Tsifrovyye dvoyniki izdeliy. Obshchiye polozheniya [Computer models and simulation. Digital twins of products. General provisions]. Moscow, 2021. 15 p. (In Russ.).
8. Põdra P., Andersson S. Simulating sliding wear with finite element method // Tribology International. 1999. Vol. 32. P. 71– 81. DOI: 10.1016/S0301-679X(99)00012-2. (In Engl.).
9. Hegadekatte V., Huber N., Kraft O. Modeling and simulation of wear in a pin on disc tribometer // Tribology Letters. 2006. Vol. 24 (1). P. 51–60. DOI: 10.1007/s11249-006-9144-2. (In Engl.).
10. Söderberg A., Andersson S. Simulation of wear and contact pressure distribution at the pad-to-rotor interface in a disc brake using general purpose finite element analysis software // Wear. 2009. Vol. 267. P. 2243–2251. DOI: 10.1016/j.wear.2009.09.004. (In Engl.).
11. Bastola A., Stewart D., Dini D. Three-dimensional finite element simulation and experimental validation of sliding wear // Wear. 2022. Vol. 504–505. P. 204402. DOI: 10.1016/j.wear.2022.204402. (In Engl.).
12. Kónya L., Váradi K. Wear simulation of a polymer-steel sliding pair considering temperature - and time-dependent material properties // Tribology and Interface Engineering Series. 2008. Vol. 55. P. 130–145. DOI: 10.1016/S1572-3364(08)55007-5. (In Engl.).
13. Grigull U., Sandner H. Heat Conduction. Berlin, 1984. 187 p. (In Engl.).
14. Chichinadze A. V. Osnovy tribologii: (Treniye, iznos, smazka) [Basics of tribology: (Friction, wear, lubrication)]. 2nd ed. Moscow, 2001. 663 p. ISBN 5-217-03053-4. (In Russ.).
15. Alpert C. P., Chan H. M., Bennison S. J. [et al.]. Temperature dependence of hardness of alumina-based ceramics // Journal of American Ceramic Society. 1988. Vol. 71. P. 371–373. (In Engl.).
16. Huang Z., Gu L. Y., Weertman J. R. Temperature dependence of hardness of nanocrystalline copper in lowtemperature range // Scripta Materualia. 1997. Vol. 37, no. 7. P. 1071–1075. DOI: 10.1016/S1359-6462(97)00209-1. EDN: YALXKD. (In Engl.).
17. Wang H. L., Hon M. H. Temperature dependence of ceramics hardness // Ceramics International. 1999. Vol. 25, no. 3. P. 267–271. (In Engl.).
18. Milman Yu. V., Chugunova S. I., Goncharova I. V. [et al.]. Temperature dependence of hardness in silicon-carbide ceramics with different porosity // International Journal of Refractory Materials & Hard Materials. 1999. Vol. 17. P. 361–368. DOI: 10.1016/S0263-4368(99)00022-0. (In Engl.).
19. Wang R., Li D., Li W. Temperature dependence of hardness prediction for high-temperature structural ceramics and their composites // Nanotechnology Reviews. 2021. Vol. 10. P. 586–595. DOI: 10.1515/ntrev-2021-0041. (In Engl.).
Review
For citations:
Zhuravlyov D.N., Borovkov A.I. Development of a methodology taking into account the temperature dependence of material properties in simulation of wear in fast-rotating pivot jewel bearing support. Omsk Scientific Bulletin. 2024;10(2):50-58. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-50-58. EDN: ZNJPCY
JATS XML




















