Preview

Omsk Scientific Bulletin

Advanced search

The influence of preliminary heat treatment on morphology of carbon layer formed on surface of chlorinated polyvinyl chloride under the impact of a high-power ion beam

https://doi.org/10.25206/1813-8225-2023-188-125-131

EDN: WCVTCI

Abstract

The effect of preliminary heat treatment on the morphology of carbon layer formed on the surface of chlorinated polyvinyl chloride with the addition of ferrocene (10 % of polymer weight) under the impact of a high-power nanosecond-durable ion beam has been studied. Preliminary exposure of samples in an oven at different temperatures for 1 hour leads to partial dehydrochlorination of the surface layer of the polymer film and interchain crosslinking, creating centers for the start of the carbonization reaction, and thus affects the formation of carbon nanostructures during subsequent irradiation with a high-power ion beam. The possible mechanism of carbon nanostructures formation from chlorinated polyvinyl chloride under the impact of a high-power ion beam and the mechanism of the influence of preliminary heat treatment on it are considered. It has been established that different heat treatment temperatures lead to different morphologies of the resulting carbon nanostructures. On the control sample and the sample subjected to heating to 100 °C, only nanofibers are formed, preheating to 150 °C leads to the formation of a porous structure with nanosized pores under the nanofibers, and preheating to 200 °C leads to a significant decrease in the porosity and concentration of nanofibers.

About the Authors

V. S. Kovivchak
Dostoevsky Omsk State University; Omsk Scientific Center SB RAS
Russian Federation

Vladimir S. Kovivchak - Candidate of Physics and Mathematics Sciences, Associate Professor, Associate Professor of General and Experimental Physics Department, Dostoevsky Omsk State University (OmSU); Senior Researcher of Functional Electronics Laboratory, Institute of Radiophysics and Physical Electronics, Omsk Scientific Center SB RAS.

Omsk

AuthorID (RSCI) 37657

AuthorID (SCOPUS) 6603186738

ResearcherID A-3942-2014



A. A. Parygin
Dostoevsky Omsk State University
Russian Federation

Arkadiy A. Parygin - Graduate Student in the field Physics and Astronomy, OmSU.

Omsk



References

1. Ageyev O. A., Il’in O. I., Klimin V. S. [et al.]. Issledovaniye rezhimov formirovaniya i modifikatsii oriyentirovannykh massivov uglerodnykh nanotrubok metodom PECVD na nanotekhnologicheskom komplekse NANOFAB NTK-9 [Investigation of modes of formation and modification of oriented arrays of carbon nanotubes by the PECVD method on the nanotechnological complex NANOFAB NTK-9] // Izvestiya YuFU. Tekhnicheskiye nauki (Tematicheskiy vypusk: nanotekhnologii). Proceedings of the Southern Federal University. Engineering Sciences (Thematic Issue: Nanotechnologies). 2011. Vol. 4 (117). P. 69–77. (In Russ.).

2. Zhou X., Wang Y., Gong C. Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: A comprehensive review // Chemical Engineering Journal. 2020. Vol. 402. P. 126189. DOI: 10.1016/j.cej.2020.126189. (In Engl.).

3. Yadav D., Amini F., Ehrmann A. Recent advances in carbon nanofibers and their applications – A review // European Polymer Journal. 2020. Vol. 138. P. 109963. DOI: 10.1016/j.eurpolymj.2020.109963. (In Engl.).

4. Vediyappan V., Sivakumar M., Chen S.-M. [et al.]. Nanolayers of carbon protected copper oxide nanocomposite for high performance energy storage and non-enzymatic glucose sensor // Journal of Alloys and Compounds. 2021. Vol. 875. P. 160063. DOI: 10.1016/j.jallcom.2021.160063. (In Engl.).

5. Sridara T., Upan J., Saianand G. [et al.]. Non-Enzymatic Amperometric Glucose Sensor Based on Carbon Nanodots and Copper Oxide Nanocomposites Electrode // Sensors. 2020. Vol. 20, no. 3. P. 808. DOI: 10.3390/s20030808. (In Engl.).

6. Shu R., Li W., Wu Y. [et al.]. Fabrication of nitrogen-doped cobalt oxide/cobalt/carbon nanocomposites derived from heterobimetallic zeolitic imidazolate frameworks with superior microwave absorption properties // Composites Part B. 2019. Vol. 178. P. 107518. DOI: 10.1016/j.compositesb.2019.107518. (In Engl.).

7. Shu R., Wu Y., Zhang J. [et al.]. Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocomposites for electromagnetic wave absorption // Composites Part B. 2020. Vol. 193. P. 108027. DOI: 10.1016/j.compositesb.2020.108027. (In Engl.).

8. Wang K., Liu C., Wang W. [et al.]. Synthesis and electrochemical performance of nickel–cobalt oxide/carbon nanocomposites for use in efficient oxygen evolution reaction // Journal of Materials Science: Materials in Electronics. 2019. Vol. 30. P. 4144–4151. DOI: 10.1007/s10854-019-00706-5. (In Engl.).

9. Chyan Y., Ye R., Li Y. [et al.]. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food // ACS Nano. 2018. Vol. 12, no. 3. P. 2176–2183. DOI:10.1021/acsnano.7b08539. (In Engl.).

10. Peng Z., Lin J., Ye R. [et al.]. Flexible and Stackable Laser Induced Graphene Supercapacitors // ACS Applied Materials & Interfaces. 2015. Vol. 7, no. 5. P. 3414–3419. DOI: 10.1021/am509065d. (In Engl.).

11. Lamberti A., Perrucci F., Caprioli M. [et al.]. New insights on laser induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties // Nanotechnology. 2017. Vol. 28, no. 17. P. 174002. DOI: 10.1088/1361-6528/aa6615. (In Engl.).

12. Lamberti A., Clerici F., Fontana M. [et al.]. A Highly Stretchable Supercapacitor Using Laser-Induced Graphene Electrodes onto Elastomeric Substrate // Advanced Energy Materials. 2016. Vol. 6. P. 1600050. DOI: 10.1002/aenm.201600050. (In Engl.).

13. Lin J., Peng Z., Liu Y. [et al.]. Laser-induced porous graphene films from commercial polymers // Nature communications. 2014. Vol. 5. P. 5714. DOI: 10.1038/ncomms6714. (In Engl.).

14. Shimoyama M., Niino H., Yabe A. A KrF excimer laser induced dehydrochlorination of a chlorinated poly(vinylchloride): preparation of conjugated polyene and polyyne // Macromol. Chem. 1992. Vol. 193 (3). P. 569–574. DOI: 10.1002/macp.1992.021930301. (In Engl.).

15. Liu J., Shimanoe H., Ko S. [et al.]. Highly Chlorinated Polyvinyl Chloride as a Novel Precursor for Fibrous Carbon Material // Polymers. 2020. Vol. 12, no. 2. P. 328. DOI: 10.3390/polym12020328. (In Engl.).

16. Kovivchak V. S., Kryazhev Yu. G., Zapevalova E. S. Formirovaniye nanostrukturirovannogo uglerodnogo materiala na poverkhnosti polimera, soderzhashchego ferrotsen, pri vozdeystvii moshchnogo ionnogo puchka [Formation of nanostructured carbon material on the surface of a ferrocene-containing polymer under the influence of a high-power ion beam] // Pis′ma v zhurnal tekhnicheskoy fiziki. Technical Physics Letters. 2016. Vol. 42, no. 3. P. 84–90. (In Russ.).

17. Kovivchak V. S. Osobennosti vozdeystviya moshchnogo ionnogo puchka nanosekundnoy dlitel’’nosti na polietilentereftalat [Features of the effect of a high-power ion beam of nanosecond duration on polyethylene terephthalate] // Poverkhnost’. Rentgenovskiye, sinkhrotronnyye i neytronnyye issledovaniya. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2023. No. 3. P. 11–15. DOI: 10.31857/S1028096023030068. (In Russ.).

18. Kovivchak V. S., Kryazhev Yu. G. Formirovaniye nanostrukturirovannogo ugleroda na poverkhnosti khlorpolimerov pri vozdeystvii moshchnogo ionnogo puchka nanosekundnoy dlitel′nosti [Formation of nanostructured carbon on a surface of chlorinated polymers under the action of a high power ion beam of nanosecond duration] // Vzaimodeystviye izlucheniy s tverdym telom. Interaction of Radiation with Solids. Minsk, 2017. P. 56–57. (In Russ.).

19. Dontsov A. A., Lozovik G. Ya., Novitskaya S. P. Khlorirovannyye polimery [Chlorinated polymers]. Moscow, 1979. 232 p. (In Russ.).

20. Kovivchak V. S., Parygin A. A. Vliyaniye predvaritel’nogo ul’trafioletovogo oblucheniya na formirovaniye uglerodnykh nanovolokon na poverkhnosti khlorirovannogo polivinilkhlorida pri vozdeystvii moshchnogo ionnogo puchka [Influence of UV pre-irradiation on the formation of carbon nanofibers on the surface of chlorinated polyvinyl chloride under the action of a high power ion beam] // Poverkhnost’. Rentgenovskiye, sinkhrotronnyye i neytronnyye issledovaniya. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2022. No. 3. P. 44–49. DOI: 10.31857/S1028096022030116. (In Russ.).

21. Jia Liu, Yin Lv, Zhidong Luo [et al.]. Molecular chain model construction, thermostability, and thermo-oxidative degradation mechanism of poly (vinyl chloride) // RCS Advances. 2016. Vol. 6. P. 31898–31905. DOI: 10.1039/c6ra02354a. (In Engl.).

22. Tarasov I. Yu. Stabilizatsiya polivinilkhlorida [Stabilization of polyvinyl chloride] // Sovremennaya nauka: eksperiment i nauchnaya diskussiya. Modern Science: Experiment and Scientific Discussion. Anapa, 2022. P. 60–66. (In Russ.).

23. Strepikheyev A. A., Derevitskaya V. A. Osnovy khimii vysokomolekulyarnykh soyedineniy [Fundamentals of chemistry of macromolecular compounds]. Moscow, 1976. 440 p. (In Russ.).

24. Ta K. K., Bondaletov V. G., Ogorodnikov V. D. [et al.]. Termookislitel’naya destruktsiya kompozitsiy poliditsiklo-pentadiyena s khlorsoderzhashchimi antipirenami [Thermooxidative degradation of compositions of polydicyclopentadiene with chlorine-containing flame retardants] // Plasticheskiye massy. Plastic Masses. 2020. No. 11-12. P. 8–10. DOI: 10.35164/0554-2901-2020-11-12-8-10. (In Russ.).

25. Parygin A. A. Vliyaniye predvaritel’noy degidrokhloriruyushchey obrabotki na poverkhnostnuyu morfologiyu khlorirovannogo polivinilkhlorida, obluchennogo moshchnym ionnym puchkom [Influence of preliminary dehydrochlorinating treatment on the surface morphology of chlorinated polyvinyl chloride irradiated with a high-power ion beam] // Nauchnyy forum: tekhnicheskiye i fiziko-matematicheskiye nauki. Scientific Forum: Technical and Physical and Mathematical Sciences. 2022. Vol. 8, no. 58. P. 27–31. (In Russ.).


Review

For citations:


Kovivchak V.S., Parygin A.A. The influence of preliminary heat treatment on morphology of carbon layer formed on surface of chlorinated polyvinyl chloride under the impact of a high-power ion beam. Omsk Scientific Bulletin. 2023;(4):125-131. (In Russ.) https://doi.org/10.25206/1813-8225-2023-188-125-131. EDN: WCVTCI

Views: 7

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)