Uneven air gap optimization of synchronous machine with permanent rotor magnets
https://doi.org/10.25206/1813-8225-2023-186-112-118
Abstract
The article proposes an approach to determining the uneven air gap of a synchronous machine with prismatic magnets on the rotor, in which the distribution of the normal component of magnetic induction along the inner circumference of the stator core has a shape close to sinusoidal. The calculation of the magnetic field of an electric machine model with the specified geometric dimensions and properties of the element materials is performed in the FEMM program. To solve the optimization problem, the Hook-Jeeves method is used, restrictions are taken into account by the method of penalty functions. As a result of modeling the magnetic field of an electric machine with a calculated optimal uneven air gap, a distribution curve of the normal component of magnetic induction along the inner circumference of the stator is obtained, the average deviation of which from the sinusoidal curve is 4,8 %.
About the Authors
V. V. KharlamovRussian Federation
KHARLAMOV Viktor Vasilyevich, Doctor of Technical Sciences, Professor, Head of Electrical Machines and General Electrical Engineering Department
Omsk
Yu. V. Moskalev
Russian Federation
MOSKALEV Yuriy Vladimirovich, Candidate of Technical Sciences, Associate Professor, Associate Professor of Electrical Machines and General Electrical Engineering Department
Omsk
A. Yu. Milutin
Russian Federation
MILYUTIN Aleksey Yuryevich, Graduate Student of Electrical Machines and General Electrical Engineering Department
Omsk
A. P. Popov
Russian Federation
POPOV Anatoliy Petrovich, Graduate Student of Electrical Machines and General Electrical Engineering Department
Omsk
References
1. Vol’dek A. I., Popov V. V. Elektricheskiye mashiny. Mashiny peremennogo toka [Electrical machines. AC machines]. Saint Petersburg, 2010. 350 p. ISBN 978-5-469-01381-5. (In Russ.).
2. But D. A. Beskontaktnyye elektricheskiye mashiny [Noncontact electrical machines]. Moscow, 1990. 416 p. ISBN 5-06-000719-7. (In Russ.).
3. Furlani Ed. P. Permanent Magnet and Electromechanical Devices. New York: Academic press, 2001. 537 p. ISBN 0-12-269951-3. (In Engl.).
4. Magin V. V. Osobennosti proyektirovaniya rotorov maloshchmnykh sinkhronnykh dvigateley s vozbuzhdeniyem ot postoyannykh magnitov [Rotor design special features of the low-noise synchronous motors with a constant excitation from permanent magnets] // Voprosy elektromekhaniki. Trudy VNIIEM. Electromechanical Matters. VNIIEM Studies. 2015. Vol. 144, no. 1. P. 3–15. (In Russ.).
5. Tatevosyan A. A., Mishchenko V. S. Modelirovaniye magnitnogo polya sinkhronnogo generatora s postoyannymi magnitami [Simulation of magnetic field of synchronous generator with permanent magnets] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2016. No. 4 (148). P. 90–93. (In Russ.).
6. Kuleshov E. V., Sergeyev V. D. Bystrokhodnyy magnitoelektricheskiy sinkhronnyy vetrogenerator [High-speed magnetoelectric synchronous wind generator] // Sovremennyye tendentsii v razvitii i konstruirovanii kollektornykh i drugikh elektromekhanicheskikh preobrazovateley energii. Current Trends in the Development and Design of Collector and other Electromechanical Energy Converters. Omsk, 2003. P. 338–344. (In Russ.).
7. Sinkhronnyye tyagovyye dvigateli s vozbuzhdeniyem ot postoyannykh magnitov [Synchronous traction motors with permanent magnet excitation] // Zheleznyye dorogi mira. The World's Railways. 2011. No. 6. P. 38–42. (In Russ.).
8. Vavilov V. E. Vybor magnitnoy sistemy rotora elektromekhanicheskikh preobrazovateley energii s vysokokoertsitivnymi postoyannymi magnitami [Selection of magnetic system of rotor of energy electromechanical converters with high-coercive permanent magnets] // Vestnik mashinostroyeniya. Engineering Journal. 2018. No. 1. P. 26–29. (In Russ.).
9. Gecha V. Ya., Zakharenko A. B., Nadkin A. K. Proyektirovaniye elektromashiny s postoyannymi magnitami, namagnichennymi po skheme Khal’bakha [Designing an electrical machine with permanent magnets magnetized according to Halbach scheme] // Voprosy elektromekhaniki. Trudy VNIIEM. Electromechanical Matters. VNIIEM Studies. 2020. Vol. 177, no. 4. P. 3–10. (In Russ.).
10. Kharlamov V. V., Moskalev Yu. V., Serkova L. E. Analiz skhem razmeshcheniya postoyannykh magnitov na rotore chetyrekhpolyusnoy elektricheskoy mashiny [Analysis of permanent magnet arrangement on the rotor of a four-pole electric machine] // Dinamika sistem, mekhanizmov i mashin. Dynamics of Systems, Mechanisms and Machines. 2019. Vol. 7, no. 2. P. 73–79. DOI: 10.25206/2310-9793-7-2-73-79. (In Russ.).
11. Andreyeva E. G., Tatevosyan A. A., Semina I. A. Issledovaniye modeley magnitnykh sistem otkrytogo tipa v kompleksakh programm ELCUT i ANSYS [Investigation of open magnetic system models in ELCUT and ANSYS software packages] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2013. No. 2 (120). P. 231–235. (In Russ.).
12. Finite Element Method Magnetics. URL: http://www.femm.info (accessed: 24.10.2022). (In Engl.).
Review
For citations:
Kharlamov V.V., Moskalev Yu.V., Milutin A.Yu., Popov A.P. Uneven air gap optimization of synchronous machine with permanent rotor magnets. Omsk Scientific Bulletin. 2023;(2):112-118. (In Russ.) https://doi.org/10.25206/1813-8225-2023-186-112-118
JATS XML




















