Preview

Omsk Scientific Bulletin

Advanced search

Automated synthesis of integrated microwave LC-filters layouts with passband losses minimization

https://doi.org/10.25206/1813-8225-2023-188-152-161

EDN: OJPIEK

Abstract

The paper proposes the developed technique for automated synthesis of integrated microwave LC filter layouts with passband losses minimization by minimizing interconnection lengths and searching for optimal layouts of conductors, inductors, and capacitors. Algorithms for minimizing losses and length of LC-filter interconnections are proposed. The layouts of conductors, inductors, and capacitors are optimized based on silicon-verified models that take into account the main characteristics and limitations of the process, skin effect, edge effects, substrate and via influences. The CAD is developed in MathCAD software based on the proposed technique. The use of CAD made it possible to reduce the engineering time for integrated LC-filters to tens of minutes, reduce the filters passband losses by 1,1–2,7 dB and increase the AFCs gain slope by 47–267 dB/dec.

About the Authors

V. V. Erokhin
Omsk State Technical University
Russian Federation

Viktor V. Erokhin - Graduate Student of Radio Devices and Diagnostic Systems Department, Research Scientist of «Systems on Chip» Research Laboratory, Omsk State Technical University (OmSTU).

Omsk

AuthorID (RSCI) 918830



S. A. Zavyalov
Omsk State Technical University
Russian Federation

Sergey A. Zavyalov - Associate Professor of Technical Sciences, Associate Professor of Radio Devices and Diagnostic Systems Department, Senior Research of «Systems on Chip» Research Laboratory, OmSTU.

Omsk



References

1. Kim J., Plouchart J. K., Zamdmer N. [et al.]. High-Performance Three-Dimensional On-chip Inductors in SOI CMOS Technology for Monolithic RF Circuit Applications // Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE. 2003. P. 591–594. DOI: 10.1109/RFIC.2003.1214016. (In Engl.).

2. Danesh M., Long J. R. Differentially Driven Symmetric Microstrip Inductors // IEEE Transactions on Microwave Theory and Techniques. 2002. Vol. 50, Issue 1. P. 332–341. DOI: 10.1109/22.981285. (In Engl.).

3. Chen J., Liou J. J. Improved and Physics-Based Model for Symmetrical Spiral Inductors // IEEE Transactions on Electron Devices. 2006. Vol. 53, Issue 6. P. 1300–1309. DOI: 10.1109/TED.2006.874089. (In Engl.).

4. Chen J., Liou J. J. On-Chip Spiral Inductors for RF Applications: An Overview // Journal of Semiconductor Technology and Science. 2004. Vol. 4, no. 3. P. 149–167. (In Engl.).

5. Liang H.-B., Lin Y.-S., Chen C.-C. [et al.]. Optimization of PGS Pattern of Transformers/Inductors in Standard RF BiCMOS Technology for RFIC Applications // Radio Frequency Integrated Circuits (RFIC) Symposium, 2006 IEEE. 2006. 4 p. DOI: 10.1109/RFIC.2006.1651205. (In Engl.).

6. Royet A. S., Barbé J. C., Valorge O. [et al.]. Constant. Experimental and Simulation Results on Si Integrated Inductor Efficiency for Smart RF-ICs // 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS). 2014. P. 368–370. DOI: 10.1109/ICECS.2014.7049998. (In Engl.).

7. Shi J., Yin W.-Y., Liao H. [et al.]. The Enhancement of Q Factor for Patterned Ground Shield Inductors at High Temperatures // IEEE Transactions on Magnetics.2006. Vol. 42, Issue 7. P. 1873–1875. DOI: 10.1109/TMAG.2006.874186. (In Engl.).

8. Zhang Z., Liao X. Micromachined GaAs MMIC-Based Spiral Inductors With Metal Shores and Patterned Ground Shields // IEEE Sensors Journal. 2012. Vol. 12, Issue 6. P. 1853–1860. DOI: 10.1109/JSEN.2011.2178066. (In Engl.).

9. Kaynak M., Korndörfer F., Wipf C. [et al.]. High-Q passives for mm-wave SiGe applications // IEEE Bipolar/BiCMOS Circuits and Technology Meeting. 2009. P. 194–197. DOI: 10.1109/BIPOL.2009.5314243. (In Engl.).

10. López-Villegas J. M., Samitier J., Cane C. [et al.]. Bausells. Improvement of the Quality Factor of RF Integrated Inductors by Layout Optimization // IEEE Transactions on Microwave Theory and Techniques. 2000. Vol. 48, Issue 1. P. 76–83. DOI: 10.1109/22.817474. (In Engl.).

11. Korndörfer F., Kaynak M., Mühlhaus V. Simulation and Measurement of Back Side Etched Inductors // The 5th European Microwave Integrated Circuits Conference. 2010. P. 389–392. (In Engl.).

12. Erokhin V. V. Verifikatsiya modeli integral’noy katushki induktivnosti dlya SVCh LC-fil’trov v Si- i SiGe-sistemakh na kristalle [Integrated Inductor Model Verification for Microwave LC-filters in Si and SiGe Systems on a Chip] // Vestnik SibGUTI. The Herald of the Siberian State University of Telecommunications and Information Science. 2022. No. 2 (58). P. 94–109. DOI: 10.55648/1998-6920-2022-16-2-94-109. (In Russ.).

13. Erokhin V. V., Sadykov Zh. B., Blinkov S. D. Vliyaniye topologii obshchego vyvoda na AChKh integral’nogo SVCh LC-fil’tra [Ground conductor layout influence on integrated microwave LC-filter AFCS] // Dinamika sistem, mekhanizmov i mashin. Dynamics of Systems, Mechanisms and Machines. 2022. Vol. 10, no. 2. P. 57–64. DOI: 10.25206/2310-9793-2022-10-2-57-64. (In Russ.).

14. Ruehli A. E., Antonini G., Jiang L. Skin-Effect Model for Round Wires in PEEC. International Symposium on Electromagnetic Compatibility – EMC EUROPE. 2012. P. 1–6. DOI: 10.1109/EMCEurope.2012.6396927. (In Engl.).

15. Chan R.-J., Guo J.-C. Analysis and Modeling of Skin and Proximity Effects for Millimeter-Wave Inductors Design in Nanoscale Si CMOS // 9th European Microwave Integrated Circuit Conference. 2014. P. 13–16. DOI: 10.1109/EuMIC.2014.6997779. (In Engl.).

16. Koutsoyannopoulos Y. K., Papananos Y. Systematic Analysis and Modeling of Integrated Inductors and Transformers in RF IC Design // IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing. 2000. Vol. 47, Issue 8. P. 699–713. DOI: 10.1109/82.861403. (In Engl.).

17. Chen J., Liou J. J. On-Chip Spiral Inductors for RF Applications: An Overview // Journal of Semiconductor Technology and Science. 2004. P. 149–167. (In Engl.).

18. Shaltout A. H., Gregori S. Optimizing the Inductance Time-Constant Ratio of Polygonal Integrated Inductors // IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). 2018. P. 448–451. DOI: 10.1109/MWSCAS.2018.8623945. (In Engl.).

19. Hsu H.-M., Chang J.-Z., Chien H.-C. Coupling Effect of On-Chip Inductor With Variable Metal Width // IEEE Microwave and Wireless Components Letters. 2007. Vol. 17, Issue 7. P. 498–500. DOI: 10.1109/LMWC.2007.899306. (In Engl.).

20. Elsaadi M., Tayel M. B., Steenson D. P. An Empirical Formula of Fringing Field Capacitance for MEMS Tunable Capacitor Actuators // IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA. 2021. P. 674–678. DOI:10.1109/MI-STA52233.2021.9464509. (In Engl.).

21. Goni A., del Pino J., Gonzalez B. [et al.]. An Analytical Model of Electric Substrate Losses for Planar Spiral Inductors on Silicon // IEEE Transactions on Electron Devices. 2007. Vol. 54, Issue 3. P. 546–553. DOI: 10.1109/TED.2006.890366. (In Engl.).

22. Sathyasree J., Vanukuru V., Nair D. R. [et al.]. A Substrate Model for On-Chip Tapered Spiral Inductors With Forward and Reverse Excitations // IEEE Transactions on Electron Devices. 2019. Vol. 66, Issue 1. P. 4. DOI: 10.1109/TED.2018.2873796. (In Engl.).

23. Zaal R. Spravochnik po raschetu fil’trov [Handbook of filter design]: trans from Germ. Moscow, 1983. 752 p. (In Russ.).

24. Khanzel G. E. Spravochnik po raschetu fil’trov [Handbook of filter design]: trans from Engl. / ed by A. E. Znamenskogo. Moscow, 1974. 288 p. (In Russ.).

25. Tatur T. A. Osnovy teorii elektricheskikh tsepey [Fundamentals of the electrical circuits theory]. Moscow, 1980. 271 p. (In Russ.).

26. Erokhin V. V., Zav’yalov S. A. Avtomatizirovannyy sintez topologiy SVCh integral’nykh vysokoizbiratel’nykh LC-fil’trov s minimizatsiyey poter’ v polose propuskaniya: programma dlya EVM [Automated synthesis of microwave topologies of integrated highly selective LC filters with minimisation of losses in the passband: computer program]. Moscow, 2023. No. 2023660979. (In Russ.).

27. Ahyoune S., Lуpez-Villegas J., Sieiro J. [et al.]. Effects of Shielding Structures on the Performance of Planar Inductors // Conference on Design of Circuits and Integrated Systems (DCIS). 2016. DOI: 10.1109/DCIS.2016.7845353. (In Engl.).

28. Ali M. H. M., Ler C.-L., Rustagi S. C. [et al.]. The Impact of Electromagnetic Coupling of Guard Ring Metal Lines on the Performance of On-chip Spiral Inductor in Silicon CMOS // 2nd Asia Symposium on Quality Electronic Design (ASQED). 2010. P. 285–288. DOI: 10.1109/ASQED.2010.5548257. (In Engl.).

29. Kojima K., Ohguro T., Momose H. S. [et al.]. Guardring design for high-performance RF CMOS // International Conference on Solid State Devices and Materials. 2002. P. 400–401. DOI: 10.7567/SSDM.2002.P2-9. (In Engl.).

30. Pun A., Yeung T., Lau J. [et al.]. Experimental Results and Simulation of Substrate Noise Coupling via Planar Spiral Inductor in RF ICs // International Electron Devices Meeting. IEDM Technical Digest. 1997. P. 325–328. DOI: 10.1109/IEDM.1997.650393. (In Engl.).


Review

For citations:


Erokhin V.V., Zavyalov S.A. Automated synthesis of integrated microwave LC-filters layouts with passband losses minimization. Omsk Scientific Bulletin. 2023;(4):152-161. (In Russ.) https://doi.org/10.25206/1813-8225-2023-188-152-161. EDN: OJPIEK

Views: 9

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)