Preview

Omsk Scientific Bulletin

Advanced search

Modeling of power losses in contact systems of low-voltage switching devices

https://doi.org/10.25206/1813-8225-2023-186-126-133

Abstract

The article studies the dependences of active power losses in contacts and contact systems of circuit breakers, contactors and magnetic starters on the main parameters of electrical equipment. Models of functional dependences of active power losses on nominal current for low-voltage switching devices of some manufacturers are developed. Approximation functions of these characteristics have been compiled and the value of determination coefficient of the obtained functions of active losses and approximation error have been calculated. Graphical dependences of the investigated parameters of low-voltage equipment are presented.

About the Authors

A. R. Petrov
Kazan State Power Engineering University
Russian Federation

PETROV Almaz Radikovich, Graduate Student of Power Supply of Industrial Enterprises Department, Institute of  Electric Power and Electronics

Kazan



E. I. Gracheva
Kazan State Power Engineering University
Russian Federation

GRACHEVA Elena Ivanovna, Doctor of Technical Sciences, Associate Professor, Professor of Power Supply of  Industrial Enterprises Department, Institute of Electric Power and Electronics

Kazan



References

1. Gracheva E. I., Gorlov A. N., Alimova A. N. Algoritmy i modeli poter’ moshchnosti v avtomaticheskikh vyklyuchatelyakh, ustanavlivayemykh v tsekhovykh setyakh [Algorithms and models of power losses in circuit breakers installed in networks] // Vestnik MGTU. Vestnik of MSTU. 2020. Vol. 23, no. 4. P. 345– 353. DOI: 10.21443/1560-9278-2020-23-4-345-353. (In Russ.).

2. Gracheva E. I., Gorlov A. N., Alimova A. N. [et al.]. Opredeleniye zakonov izmeneniya soprotivleniya kontaktnykh grupp elektricheskikh apparatov nizkogo napryazheniya [Resistance change of contact groups of low-voltage electrical apparatus: Determining the laws] // Vestnik MGTU. Vestnik of MSTU. 2021. Vol. 24, no. 4. P. 350–360. DOI: 10.21443/1560-9278-2021-24-4-350-360. (In Russ.).

3. Safin A. R., Khusnutdinov R. R., Kopylov A. M. [et al.]. Razrabotka metoda topologicheskoy optimizatsii elektricheskikh mashin na osnove geneticheskogo algoritma [Model of the control system rocking machines of oil the basic of a synchronous engines with the sensorless method] // Vestnik KGEU. Vestnik KGEU. 2018. No. 4 (40). P. 77–85. (In Russ.).

4. Soluyanov Yu. I., Fedotov A. I., Galitskiy Yu. Ya. [et al.]. Aktualizatsiya normativnykh znacheniy udel’noy elektricheskoy nagruzki mnogokvartirnykh domov v Respublike Tatarstan [Updating the Standard Specific Electric Loads of Apartment Buildings in the Republic of Tatarstan] // Elektrichestvo. Elektrichestvo. 2021. No. 6. P. 62–71. DOI: 10.24160/0013-5380-2021-6-62-71. (In Russ.).

5. Soluyanov Yu. I., Fedotov A. I., Akhmetshin A. R. [et al.]. Analiz fakticheskikh elektricheskikh nagruzok pomeshcheniy obshchestvennogo naznacheniya, vstroyennykh v zhilyye zdaniya [Analysis of the actual electrical loads of public premises embedded in residential buildings] // Izvestiya vysshikh uchebnykh zavedeniy. Problemy energetiki. Power Engineering: Research, Equipment, Technology. 2021. Vol. 23, no. 6. P. 134–147. DOI: 10.30724/1998-9903-2021-23-6-134-147. (In Russ.).

6. Egorov E. G., Ivanova S. P., Luiya N. Yu. [et al.]. Issledovaniye otklyuchayushchey sposobnosti avtomaticheskikh vyklyuchateley v rezhime korotkogo zamykaniya [Investigation of the breaking capacity of the automatic circuit-breakers in the short-circuit mode] // Elektrotekhnika. Electrical Engineering. 2018. No. 8. P. 12–15. (In Russ.).

7. Egorov E. G., Egorov G. E., Luiya N. Yu. Osobennosti izmereniya vosstanavlivayushcheysya elektricheskoy prochnosti v nizkovol’tnykh kontaktorakh peremennogo toka [Features of measurement of recoverableelectrical strength in low-voltage ac contactors] // Vestnik Chuvashskogo universiteta. Bulletin of the Chuvash University. 2019. No. 3. P. 78–86. (In Russ.).

8. Muratayeva G. A., Muratayev I. A., Sabitov S. E. [et al.]. Metod optimizatsii rezhima elektricheskoy seti dlya snizheniya poter’ moshchnosti [Method for optimising grid operation to reduce power losses] // Vestnik sovremennykh issledovaniy. Bulletin of Modern Research. 2018. No. 5.1 (20). P. 476–479. (In Russ.).

9. Hnatiuc B., Borta M., Hnatiuc M. Switching Transient Regime of Shunts Release from a Low Voltage Circuit Breaker Commanded by a PLC // 2019 International Conference on Electromechanical and Energy Systems (SIELMEN), Craiova, Romania. 2019. P. 1–6. DOI: 10.1109/SIELMEN.2019.8905865. (In Engl.).

10. Butorin V. A., Tsarev I. B., Banin R. V. [et al.]. Vremya pervoy proverki sostoyaniya kontaktov magnitnogo puskatelya [Time of first check of condition contact magnetic pusher] // Vestnik Kurganskoy GSKHA. Bulletin of KSAA. 2019. No. 2 (30). P. 58–60. (In Russ.).

11. Feizifar B., Usta Ö. A new failure protection algorithm for circuit breakers using the power loss of switching arc incidents // Turkish Journal of Electrical Engineering and Computer Sciences. 2019. No. 27 (3). P. 1982–1997. DOI: 10.3906/elk-1805-84. (In Engl.).

12. Lei C., Tian W., Zhang Y. [et al.]. Probability-based circuit breaker modeling for power system fault analysis // IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA. 2017. P. 979–984. DOI: 10.1109/apec.2017.7930815. (In Engl.).

13. Dougerti K. Vvedeniye v ekonometriku [Introduction to econometrics]. Moscow, 2009. 465 p. (In Russ.).


Review

For citations:


Petrov A.R., Gracheva E.I. Modeling of power losses in contact systems of low-voltage switching devices. Omsk Scientific Bulletin. 2023;(2):126-133. (In Russ.) https://doi.org/10.25206/1813-8225-2023-186-126-133

Views: 6

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)