Preview

Omsk Scientific Bulletin

Advanced search

Highly reliable switched reluctance motor for the traction electric drive system of railway rolling stock

https://doi.org/10.25206/1813-8225-2023-188-70-76

EDN: AOCLHB

Abstract

The main purpose of this work is to create conditions for the use of switched reluctance motor in the traction electric drive system of rolling stock by increasing the reliability of its bearings. The object of the study is the traction switched reluctance motor. The task has been set, which consists in developing an algorithm that allows to calculate the characteristics of the traction switched reluctance motor at the stages of design and production, taking into account the forces of a one-way magnetic attraction. The forces of one-way magnetic attraction, arising in the air gap of the electric motor with two types of its non-uniformity are studied. A proposal has been made to limit the force of the one-way magnetic attraction to a force at a permissible residual imbalance. As a result, an algorithm for determining the characteristics of the traction switched reluctance motor is unique in its kind, which makes it possible to reduce the effect of forces of the one-way magnetic attraction on bearings. The use of switched reluctance motor with a long service life of bearings in the traction drive system will make it possible to obtain a new competitive rolling stock.

About the Author

E. E. Miroshnichenko
Rostov State Transport University
Russian Federation

Ekaterina E. Miroshnichenko - Candidate of Technical Sciences, Associate Professor of Traction Rolling Stock Department, Rostov State Transport University of Communications.

Rostov-on-Don

AuthorID (RSCI) 1097933

AuthorID (SCOPUS) 56584045300



References

1. Romanovskiy V. V., Nikiforov B. V., Makarov A. M. Ventil’no-induktornyy privod VIP-1000-1100 v sisteme elektrodvizheniya [Switched reluctance drive SRD-1000-1100 in the electromotive systems] // Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala Makarova. Bulletin of the State University of the Sea and River Fleet named after Admiral Makarov. 2019. Vol. 11, no 3. P. 573–580. DOI: 10.21821/2309-5180-2019-11-3-573-581. (In Russ.).

2. Temirev A. P., Nguyen K. K. Issledovaniye ventil’no-induktornogo dvigatelya bol’shoy moshchnosti dvukhpaketnoy kostruktsii dlya pul’povykh nasosov GRAT-1800/67 gornorudnogo oborudovaniya [Research of the high power two-package switched reluctance motor for pulp pumps GRAT-1800/67 of a mining equipment] // Izvestiya SPbGETU «LETI». Proceedings of Saint Petersburg Electrotechnical University. 2017. No. 1. P. 54–62. (In Russ.).

3. Nikiforov N. V., Pakhomin S. A., Ptakh G. K. Ventil’no-induktornyye dvigateli dlya tyagovykh elektroprivodov [Switched reluctance motor for traction electric drives] // Elektrichestvo. Electricity. 2007. No. 2. P. 34–38. (In Russ.).

4. Fang G., Scalcon F. P., Xiao D. [et al.] Advance control of switched reluctance motors (SRMs): a review on current regulation, torque control and vibration suppression // IEEE Open Journal of Industrial Electronics Society. 2021. № 2. P. 280–301. DOI: 10.1109/OJIES.2021.3076807. (In Engl.).

5. Bruslinovskiy B. V., Evtodiy A. A. Snizheniye shchuma ventil’no-induktornogo dvigatelya pri shirotno-impul’snom upravlenii so sluchaynym izmeneniyem parametrov [Acoustic noise reduction in the switched reluctance motors using the puls-width modulation with the random switching strategy] // Izvestiya SPbGETU «LETI». Proceedings of Saint Petersburg Electrotechnical University. 2015. No 8. P. 38–46. (In Russ.).

6. Anuchin A. S. Razrabotka tsifrovykh sistem effektivnogo upravleniya komplektov tyagovogo elektrooborudovaniya gibridnykh elektricheskikh transportnykh sredstv [Development of digital systems for effective control of traction electrical equipment for hybrid electric vehicles]. Moscow, 2018. 445 p. (In Russ.).

7. Chun G., Jianhua W., Mengjie S. [et al]. Investigation of Skewing Effects on the Vibration Reduction of Three-Phase Switched Reluctance Motors // IEEE Transactions on Magnetic. 2015. Vol. 51, no. 9. P. 1–9. DOI: 10.1109/TMAG.2015.2441035. (In Engl.).

8. Isfahani A. H., Fahimi B. Comparison of Mechanical Vibration Between a Double-Stator Switched Reluctance Machine and a Conventional Switched Reluctance Machine // IEEE Transactions on Magnetic. 2014. Vol. 50, no. 2. P. 293–296. DOI: 10.1109/TMAG.2013.2286569. (In Engl.).

9. Lin F-C., Yang S-M. Analysis and modeling of the radial force in a switched reluctance motor with sinusoidal excitations // The Fifth International Conference on Power Electronics and Drive Systems. 2003. Vol. 2. P. 938–943. DOI: 10.1109/PEDS.2003.1283094. (In Engl.).

10. Lin F-C., Yang S-M. Instantaneous Shaft Radial Force Control with Sinusoidal Excitations for Switched Reluctance Motors // Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting. Seattle. WA. USA. 2004. P. 424–430. DOI: 10.1109/IAS.2004.1348442. (In Engl.).

11. Zhu Z. Q., Liu X., Pan Z. Analytical model for predicting maximum reduction levels of vibration and noise in switched reluctance machine by active vibration cancellation // IEEE Trans. Energy Convers. 2011. Vol. 26, no. 1. P. 36–45. DOI: 0.1109/TEC.2010.2087336. (In Engl.).

12. Makino H., Kosaka T., Matsui N. Digital PWM-control-based active vibration cancellation for switched reluctance motors // IEEE Transactions on Industry Applications. 2015. Vol. 51, no. 6. P. 4521–4530. DOI: 10.1109/TIA.2015.2448065. (In Engl.).

13. Cao X., Deng Z., Yang G. [et al.] Independent control of average torque and radial force in bearingless switched-reluctance motors with hybrid excitations // IEEE Transactions on Power Electronics. 2009. Vol. 24, no. 5. P. 1376–1385. DOI: 10.1109/TPEL.2009.2016568. (In Engl.).

14. GOST 24810-2013. Podshipniki kacheniya. Vnutrenniye zazory [Rolling bearings. Internal clearances]. Moscow, 2014. 19 p. (In Russ.).

15. GOST ISO 1940-1-2007. Vibratsiya. Trebovaniya k kachestvu balansirovki zhestkikh rotorov. Chast′ 1. Opredeleniye dopustimogo disbalansa [Vibration. Balance quality requirements for rotors in a constant (rigid) state. Part 1. Specification and verification of balance tolerances]. Moscow, 2008. 27 p. (In Russ.).

16. Glinkin S. A., Zakharov A. V. Opyt konstruirovaniya i osvoyeniya proizvodstva opytno-promyshlennoy partii ventil′no-induktornykh dvigateley [Experience of designing and mastering the production of a pilot-batch of switched-reluctance motors] // Vestnik IGEU. Vestnik ISPEU. 2015. No. 1. P. 14–19. (In Russ.).

17. Miroshnichenko E. E. Otsenka vliyaniya sil odnostoronnego magnitnogo prityazheniya na nadezhnost′ podshipnikovogo uzla ventil′no-induktornoy elektricheskoy mashiny [Assessing the influence of one-way magnetic attraction forces on the reliability of the bearing unit of a switched reluctance electric machine] // Vestnik Yuzhno-Ural′skogo gosudarstvennogo universiteta. Seriya: Energetika. Bulletin of the South Ural State University. Series Power Engineering. 2022. Vol. 22, no. 3. P. 39–51. DOI: 10.14529/power220305. (In Russ.).


Review

For citations:


Miroshnichenko E.E. Highly reliable switched reluctance motor for the traction electric drive system of railway rolling stock. Omsk Scientific Bulletin. 2023;(4):70-76. (In Russ.) https://doi.org/10.25206/1813-8225-2023-188-70-76. EDN: AOCLHB

Views: 5

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)