Preview

Omsk Scientific Bulletin

Advanced search

Using electro-inductive sensor to trace moving and non-moving objects tracked

https://doi.org/10.25206/1813-8225-2023-186-140-146

Abstract

The research carries out a spatial model of path tracking using the dynamic parameters of the object's position, as well as the path of motion of electric field source. The simulation results show high accuracy in estimating the dependence between the electric field components and position modifications. The results are in good agreement with the results of FEM analysis. The connection between the measurement error of the electric field component, horizontal angle, location angle, and tracking accuracy is also used to analyze the tracking performance. In addition, the method can be combined with spatiotemporal coordinates, in which case the configuration becomes appropriate to the current conditions while maintaining maximum efficiency of the estimation system as a whole and allows predicting changes in the position of the object as a field source.

About the Authors

S. S. Kolmogorova
Saint Petersburg State Forest Technical University named after S. M. Kirova
Russian Federation

KOLMOGOROVA Svetlana Sergeyevna, Candidate of Technical Sciences, Lecturer of Information Systems and Technology Department

St. Petersburg



S. V. Biryukov
Omsk State Technical University
Russian Federation

BIRYUKOV Sergey Vladimirovich, Doctor of Technical Sciences, Professor, Professor of Physics Department

Omsk



References

1. Da X., Shen H., Hong L. Aircraft electric field measurements: recent research status and key technologies // Journal of the Academy of Equipment Command and Technology. 2008. Vol. 19, no. 3. P. 80–84. (In Engl.).

2. Koto M., Okabe S. Multipoint measurement of electric field in oil gap by using electric field measurement systems based on Kerr effect // IEEJ Transactions on Power and Energy. 2006. Vol. 126, no. 3. P. 321–326. DOI: 10.1541/ieejpes.126.321. (In Engl.).

3. Kolmogorova S. S., Kolmogorov A. S., Baranov D. S., Mokryak A. V. Platforma kontrolya elektromagnitnogo polya dlya obespecheniya bezopasnosti truda i promyshlennykh ob”yektov [Electromagnetic field monitoring platform for ensuring occupational and industrial facilities safety] // Bezopasnost’ truda v promyshlennosti. Occupational Safety in Industry. 2022. No. 2. P. 58–63. DOI: 10.24000/0409-2961-2022-2-58-63. (In Russ.).

4. Kolmogorova S. S., Biryukov S. V., Kolmogorov A. S., Baranov D. S. Avtomatizirovannyy programmno-tekhnicheskiy kompleks sistemy sbora i intellektual’noy obrabotki dannykh [Computerized software and hardware complex of the system of data collection and intelligent processing] // Pribory. Instruments. 2022. No. 7 (265). P. 48–55. EDN PKYAOE. (In Russ.).

5. Kolmogorova S. S., Romanov N. O. Programmnyye moduli detsentralizovannykh besprovodnykh izmeritel’nykh sistem: cvidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM № 2022666361 [Software modules for decentralised wireless measuring systems: Certificate of State Registration of a Computer Programme. No. 2022666361]. (In Russ.).

6. Kolmogorova S. S., Biryukov S. V. Proyektirovaniye elektroinduktsionnykh datchikov i sredstv izmereniy elektricheskikh poley [Design of electro-induction sensors and electric field measuring instruments]. Saint Petersburg, 2022. 180 p. ISBN 978-5-00125-731-8. DOI: 10.25990/7bky-3e46. (In Russ.).

7. Kolmogorova S. S., Biryukov S. V., Kolmogorov A. S., Baranov D. S. Raschet kharakteristik mnogoelektrodnogo diskovogo datchika i otsenka ego effektivnosti pri ispol’zovanii v sostave platformy sbora i obrabotki dannykh [Multi-electrode disk sensor performance analysis and assessment of its application as part of a data acquisition and processing platform] // Pribory. Instruments. 2022. No. 8 (266). P. 1–13. (In Russ.).

8. Xing H., He G., Ji X. Analysis on electric field based on three dimensional atmospheric electric field apparatus // Journal of Electrical Engineering and Technology. 2018. Vol. 13, no. 4. P. 1696–1703. DOI: 10.5370/JEET.2018.13.4.1696. (In Engl.).

9. Yang X., Xing H., Wei X. [et al.]. A Moving Path Tracking Method of the Thunderstorm Cloud Based on the Three- Dimensional Atmospheric Electric Field Apparatus // Journal of Sensors. 2021. Vol. 9. P. 1–13. DOI:10.1155/2021/8856033. (In Engl.).

10. Mirolyubov N. N., Kostenko M. V., Levinshteyn M. L. Metody raschëta elektrostaticheskikh poley [Calculation methods for electrostatic fields]. Moscow, 1963. 415 p. (In Russ.).

11. Piotrovskiy Ya. Teoriya izmereniy dlya inzhenerov [Measurement theory for engineers] / trans. from Polish. Moscow, 1989. 335 p. (In Russ.).

12. Leberl F. Introduction to the mathematics of inversion in remote sensing and indirect measurement //Tectonophysics. 2013. Vol. 65, no. 3. P. 376–378. (In Engl.).

13. Kolmogorova S. S., Kutuzov M. E. Obrabotka izmeritel’nykh dannykh algoritmami iskusstvennogo intellekta: cvidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM [Measurement data processing by artificial intelligence algorithms: Certificate of State Registration of a Computer Programme]. No. 2022666360. (In Russ.).


Review

For citations:


Kolmogorova S.S., Biryukov S.V. Using electro-inductive sensor to trace moving and non-moving objects tracked. Omsk Scientific Bulletin. 2023;(2):140-146. (In Russ.) https://doi.org/10.25206/1813-8225-2023-186-140-146

Views: 8

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)