Preview

Omsk Scientific Bulletin

Advanced search

Temperature analysis and comparison of active power losses in non-stationary and stationary thermal conditions of overhead power lines

https://doi.org/10.25206/1813-8225-2023-188-93-99

EDN: WIGOVE

Abstract

The article considers the temperature distribution with increased currents in the non-stationary thermal regime of overhead power lines. The temperature distribution along the length of the line for wires of AC-240/32 and G(Z)TACSR 240 grades is constructed. Temperature dependences on time are plotted. The practical value of the mathematical model considered in the article lies in determining the maximum temperatures of overhead lines of different sections in normal or post-emergency wire mode. A comparative analysis of active power losses in a stationary thermal regime is carried out with and without taking into account axial heat transfer. The comparison showed that taking into account the axial heat transfer refines the active power losses, which allows introducing measures to reduce these losses with greater accuracy.

About the Author

V. M. Trotsenko
Omsk State Technical University
Russian Federation

Vladislav M. Trotsenko - Senior Lecturer of Power Supply for Industrial Enterprises Department, Omsk State Technical University.

Omsk

AuthorID (RSCI) 889516

AuthorID (SCOPUS) 57210208434



References

1. Goryunov V. N., Kropotin O. V., Shepelev A. O., Tkachenko V. A., Girshin S. S., Trotsenko V. M. Uproshchennaya formula dlya nagruzochnykh poter’ aktivnoy moshchnosti v liniyakh elektroperedachi s uchetom temperatury [Simplified formula for active power load losses in transmission lines taking into account temperature dependence] // Omskiy Nauchnyy Vestnik. Omsk Scientific Bulletin. 2018. No. 6 (162). P. 41–49. DOI: 10.25206/1813-8225-2018-162-41-49. EDN: YSWODB. (In Russ.).

2. Girshin S. S., Shepelev A. O. Razrabotka usovershenstvovannykh metodov raschлta ustanovivshikhsya rezhimov elektroenergeticheskikh sistem s uchлtom temperaturnoy zavisimosti aktivnykh soprotivleniy VL [Development of improved methods for calculating steady-state modes of power systems taking into account the temperature dependence of the active resistances of overhead transmission lines] // Elektricheskiye Stantsii. Electric Stations. 2019. No. 11 (1060). P. 44–54. EDN: LWEVHS. (In Russ.).

3. Girshin S. S., Goryunov V. N., Bigun A. Y. [et al.]. Raschet dinamicheskikh protsessov nagreva vozdushnykh liniy elektroperedachi na osnove kvadratichnoy modeli teploobmena [Calculation of dynamic processes of heating overhead transmission lines based on a quadratic heat transfer model] // Dinamika Sistem, Mekhanizmov i Mashin. Dynamics of Systems, Mechanisms and Machines. 2016. No. 2. P. 60–67. EDN: XBFJKL. (In Russ.).

4. Petrova E. V., Girshin S. S., Lyashkov A. A. [et al.].Analiticheskoye resheniye uravneniya teplovogo balansa provoda vozdushnoy linii v usloviyakh vynuzhdennoy konvektsii [Analytical solution of the heat balance equation for an overhead line wire under conditions of forced convection] // Sovremennyye Problemy Nauki i Obrazovaniya. Modern Problems of Science and Education. 2015. № 1–1. P. 218. (In Russ.).

5. Girshin S. S., Goryunov V. N., Kuznetsov Е. А. [et al.]. Comparative analysis of insulation-covered and bare conductors of overhead lines with variation of load currents considering weather conditions // Dynamics of Systems, Mechanisms and Machines (Dynamics). 2016. Р. 1–6. DOI: 10.1109/Dynamics.2016.7819012. (In Engl.).

6. Girshin S. S., Goryunov V. N., Bigun A. Ya. Raschet nestatsionarnykh temperaturnykh rezhimov vozdushnykh liniy elektroperedachi s uchetom nelineynosti protsessov teploobmena [Calculation of non-stationary temperature regimes of overhead power lines, taking into account the nonlinearity of heat transfer processes] // Sovremennyye Problemy Nauki i Obrazovaniya. Modern Problems of Science and Education. 2014. No. 5. P. 287. EDN: SZVMIP. (In Russ.).

7. Bigun A. Y., Girshin S. S., Goryunov V. N. [et al.]. Assessment of climatic factors influence on the time to reach maximum wire temperature of overhead power lines // Przeglad Elektrotechniczny. Electrotechnical Review. 2020. No. 96 (8). P. 39–42. DOI: 10.15199/48.2020.08.08. (In Engl.).

8. Bhattarai B. P., Gentle J. P., McJunkin T. [et al.]. Improvement of transmission line ampacity utilization by weather-based dynamic line rating // IEEE Transactions on Power Delivery. 2018. No. 33 (4). P. 1853–1863. DOI: 10.1109/ TPWRD.2018.2798411. (In Engl.).

9. Trotsenko V. M., Girshin S. S., Petrova E. V. [et al.]. Matematicheskaya model’ teplovogo rezhima vozdushnoy linii elektroperedachi s uchetom izmeneniya temperatury po dline [Mathematical model of the thermal regime of an overhead power line, taking into account temperature changes along the length] // iPolytech Journal. iPolytech Journal. 2022. No. 26 (3). P. 519–531. DOI: 10.21285/1814-3520-2022-3-519-531. (In Russ.).

10. Samarskiy A. A. Teoriya raznostnykh skhem [Theory of difference schemes]. Moscow, 1977. 656 p. ISBN 5-02-014576-9. (In Russ.).


Review

For citations:


Trotsenko V.M. Temperature analysis and comparison of active power losses in non-stationary and stationary thermal conditions of overhead power lines. Omsk Scientific Bulletin. 2023;(4):93-99. (In Russ.) https://doi.org/10.25206/1813-8225-2023-188-93-99. EDN: WIGOVE

Views: 5

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)