Preview

Omsk Scientific Bulletin

Advanced search

Development of selective line detection method with single-phase earth fault for industrial 6–35 kV networks with isolated neutral with non-sinusoidal load

https://doi.org/10.25206/1813-8225-2023-188-100-108

EDN: WIUEEM

Abstract

This paper presents a method for determining the outgoing line with a single-phase fault for 6–35 kV networks with a non-sinusoidal loads. The paper considers the relevance of applying the mathematical apparatus of the wavelet transform together with the traditional methods of fault location. The application of the wavelet is relevant in the problems of decomposition of non-sinusoidal current signal of outgoing lines. This is due to the loads of modern enterprises of the oil producing sector of Khanty-Mansiysk Autonomous Okrug–Yugra. It is proposed to modernize the existing algorithm for relative measurement of the level of higher harmonics. The proposed method makes it possible to determine the outgoing line by the total energy of the spectrum of higher harmonics for different network configurations.

About the Author

A. O. Paramzin
Yugra State University
Russian Federation

Alexander O. Paramzin - Lecturer at the Polytechnic School, Yugra State University.

Khanty-Mansiysk

AuthorID (RSCI) 1021763

AuthorID (SCOPUS) 6504763711



References

1. Ekonomika KHMAO-Yugry [Economy of Khanty-Mansi Autonomous Okrug-Yugra] // Ofitsial′nyy sayt polnomochnogo predstavitelya Prezidenta Rossiyskoy Federatsii v Ural′skom federal′nom okruge. Official website of the Plenipotentiary Representative of the President of the Russian Federation in the Urals Federal District. URL: http://uralfo.gov.ru/district/KHM/hmao_economy/ (accessed: 30.05.2023). (In Russ.).

2. Skhema i programma razvitiya elektroenergetiki Khanty-Mansiyskogo avtonomnogo okruga–Yugry na period do 2025 goda [Scheme and program of the electric power industry development in Khanty-Mansi Autonomous Okrug–Ugra for the period till 2025] // Departament zhilishchno-kompleksa i energetiki Khanty-Mansiyskogo avtonomnogo okruga – Yugry. Department of housing and energy sector of Khanty-Mansiysk Autonomous Okrug–Ugra. URL: https://docs.cntd.ru/document/570863613 (accessed: 14.06.2023). (In Russ.).

3. Shuin V. A., Vinokurova T. Yu., Shagurina E. S. Matematicheskaya model′ dlya otsenki minimal′nogo urovnya vysshikh garmonik v toke odnofaznogo zamykaniya na zemlyu v kompensirovannykh setyakh 6–10 kV [Mathematical model for estimating the minimum level of higher harmonics in the single-phase earth-fault current in compensated 6–10 kV networks] // Vestnik IGEU. Vestnik IGEU. 2013. No. 6. P. 35–41. EDN: RRYZSX. (In Russ.).

4. Medvedeva M. L., Kuzmin S. V., Kuzmin I. S., Shmanev V. D. Analiz i prognoz avariynosti raspredelitel’nykh setey i elektropriyemnikov 6–10 kV v gornoy otrasli [Analysis and forecast of accident rate of 6–10 kV distribution grids and power consumers in the mining sector Safety and Reliability of Power Industry] // Nadezhnost’ i bezopasnost’ energetiki. Safety and Reliability of Power Industry. 2017. Vol. 10, no. 2. P. 120–125. (In Russ.).

5. Shuin V. A., Gusenkov A. V. Zashchity ot zamykaniy na zemlyu v elektricheskikh setyakh 6–10 kV [Protection against earth faults in 6–10 kV electrical networks]. Мoscow, 2001. 104 p. (In Russ.).

6. Arzhannikov E. A., Chukhin A. M. Metody i pribory opredeleniya mest povrezhdeniya na liniyakh elektroperedachi [Methods and Instruments for Locating Faults on Electric Transmission Lines]. Мoscow, 1998. 87 p. (In Russ.).

7. STO 34.01-4.1-001-2016. Ustroystva opredeleniya mesta povrezhdeniya vozdushnykh liniy elektroperedachi. Obshchiye tekhnicheskiye trebovaniya [STO 34.01-4.1-001-2016. Devices for fault location of overhead power lines. General technical requirements]. PAO Rosseti, 2016. 20 р. (In Russ.).

8. Kulikov A. L., Misrikhanov M. S., Petrukhin A. А. Opredeleniye mest povrezhdeniy LEP 6–35 kV metodami aktivnogo zondirovaniya [Determination of fault locations on 6–35 kV power lines by active sensing methods]. Moscow, 2009. 164 p. ISBN 978-5-283-03292-4. (In Russ.).

9. Kulikov A. L., Vukolov V. Yu. V., Bezdushny D. I., Temirbekov J. Algorithm of fault location on a power line with branch lines [Fault location algorithm for a power line with taps] // Vestnik NGIEI. Bulletin NGIEI. 2017. No. 9 (76). P. 29–38. (In Russ.).

10. Soldatov V. A., Klimov N. A., Yablokov A. S. Opredeleniye mesta povrezhdeniya v elektricheskikh setyakh 35–10–6 kV po empiricheskim kriteriyam v koordinatakh trekh simmetrichnykh sostavlyayushchikh [Fault location in electric 35–10–6 Kv networks according to empirical criteria in the coordinates of three symmetric components] // Vestnik YUUrGU. Seriya «Energetika». Bulletin of South Ural State University. Series «Power Engineering». 2022. Vol. 22, no. 3. P. 32–38. DOI: 10.14529/power220304. (In Russ.).

11. Lachugin V. F., Panfilov D. I., Smirnov A. N., Platonov P. S. Opredeleniye mest povrezhdeniy vozdushnykh liniy vysokogo napryazheniya s ispol’zovaniyem sputnikovoy svyazi. Volnovoy metod dvustoronnikh sinkhronizirovannykh izmereniy [High voltage overhead lines fault location based on the wave bilateral synchronized measureme] // Energiya edinoy seti. Energy of Unified Grid. 2017. No. 2 (31). P. 30–41. (In Russ.).

12. Abramochkina L. V. Povysheniye tochnosti opredeleniya mesta povrezhdeniya vozdushnykh liniy elektroperedachi po parametram predavariynogo i avariynogo rezhimov [Increasing the accuracy of fault location of overhead power lines according to the parameters of pre-emergency and emergency modes]. Tomsk, 2014. 167 р. (In Russ.).

13. Klikushin Yu. N., Ptitsyna E. V., Sorokin V. Н. Issledovaniye poter’ elektricheskoy energii, vyzvannykh nalichiyem vysshikh garmonik v napryazheniyakh i tokakh silovogo kanala preobrazovaniya energii ustanovok elektrotsentrobezhnykh nasosov [Study of electric energy losses caused by the presence of higher harmonics in the voltages and currents of the power converter channel of electric centrifugal pumps units] // Izvestiya Transsiba. Journal of Transsib Railway Studies. 2012. No. 2 (10). URL: https://cyberleninka.ru/article/n/issledovanie-poter-elektricheskoy-energii-vyzvannyh-nalichiem-vysshih-garmonik-v-napryazheniyah-i-tokah-silovogo-kanala (accessed: 12.03.2023). (In Russ.).

14. Kostin V. N., Krivenko A. V., Serikov V. A. Vliyaniye vysshikh garmonik na kachestvo napryazheniya i na rabotu kondensatornykh batarey v sistemakh elektrosnabzheniya s nelineynoy nagruzkoy [Influence of high harmonics on the quality of voltage and on the operation of capacitor banks in electric supply systems with non-linear load] // Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskiye nauki. Izvestiya Tula State University. Technical Sciences. 2020. No. 5. P. 431–441. (In Russ.).

15. Mikheev G. M., Atamanov M. N., Drey N. M. Algoritm raschёta toka vysshikh garmonik v sisteme elektrosnabzheniya promyshlennykh predpriyatiy [Algorithm for calculating the current of higher harmonics in the power supply system of industrial enterprises] // Promyshlennaya energetika. Industrial Energy. 2018. No. 3. P. 40–45. EDN: XOWALR. (In Russ.)

16. Averbukh M. A., Prasol D. A Otsenka vliyaniya vysshikh garmonik na toki odnofaznykh zamykaniy na zemlyu v setyakh s izolirovannoy neytral’yu napryazheniyem 6–10 kV [Assessment of influence of higher harmonics on single-phase earth fault currents in 6–10 Kv networks with isolated neutral] // Intellektual’naya elektrotekhnika. Smart Electrical Engineering. 2021. No. 2 (14). DOI: 10.46960/2658-6754_2021_2_26. EDN: DFXIEQ. (In Russ.).

17. Soldatov A. V., Kudryashova M. N., Antonov V. I. [et al.] Metody raspoznavaniya vysshikh garmonik na fone dominiruyushchego garmonicheskogo shuma dlya tseley zashchity ot odnofaznogo zamykaniya na zemlyu [Methods for detecting higher harmonics against a background of dominant harmonic noise for the purpose of protection against single-phase ground faults] // Elektricheskiye stantsii. Electrical Stations. 2021. No. 7 (1080). P. 27–34. EDN: DCFFXI. (In Russ.).

18. Antonov V. I., Naumov V. A., Soldatov A. V. [et al.] Recognition of Weak Harmonic Signal Components in Generator Protection Against Single-Phase Earth Fault // Power Technology and Engineering. 2018. Vol. 52, no. 2. DOI: 10.1007/s10749-018-0937-x. (In Engl.).

19. Antonov V. I. Adaptivnyy strukturnyy analiz elektricheskikh signalov: teoriya i yeye prilozheniya v intellektual′noy elektroenergetike [Adaptive structural analysis of electrical signals: theory and its applications in intelligent power engineering] Cheboksary, 2018. 334 p. EDN: UWMDAS. ISBN 978-5-7677-2571-7. (In Russ.).

20. Shilin A. N., Dikarev P. V., Dementiev S. С. Intellektual′naya sistema releynoy zashchity vozdushnykh liniy v elektricheskikh setyakh s malymi tokami zamykaniya na zemlyu [Intelligent Relay Protection System for Overhead Lines in Electrical Networks with Low Earth Fault Currents] // Global’naya yadernaya bezopasnost’. Global Nuclear Security. 2022. No. 4 (45). P. 40–53. DOI: 10.26583/gns-2022-04-04. (In Russ.).

21. Touati K. O. M., Merzouk I., Hafaifa A. [et al.]. Intelligent fault diagnosis of power transmission line using fuzzy logic and artificial neural network // Diagnostyka. 2022. Vol. 23, no. 4. DOI: 10.29354/diag/156495. (In Engl.).

22. Osipov D. S., Dolgikh N. N., Satpayev D. S., Andreeva E. G. Analiz rezhima odnofaznogo zamykaniya na zemlyu v setyakh s kombinirovannym zazemleniyem neytrali s pomoshch′yu veyvlet-preobrazovaniya [Analysis of single-phase earth fault mode in networks with combined neutral ground by means of wavelet transformation] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2018. No. 5 (161). P. 76–81. DOI: 10.25206/1813-8225-2018-161-76-81. EDN: VLUZNH. (In Russ.)

23. Patent 2632989 Russian Federation, IPC G 01 R 31/08. Sposob i ustroystvo dlya opredeleniya mestonakhozhdeniya odnofaznogo zamykaniya na zemlyu v raspredelitel′noy seti na osnove veyvlet-preobrazovaniya perekhodnykh signalov [Method and device for determining location of single-phase-to-ground fault in distributing networkbased on wavelet transformation of transitional signals] / TS. Mu, TS. Van, I. Van [et al.]. No. 2015119649. (In Russ.).

24. Xu Y., Liu Y., Xing Y. [et al.]. Power Network Fault Location Using Traveling Waves and Continuous Wavelet Transform // 2022 IEEE Power & Energy Society General Meeting (PESGM). Denver. CO. USA. 2022. P. 1–5. DOI: 10.1109/PESGM48719.2022.9916846. (In Engl.).

25. Shabangu M., Roux P. Le, Jordaan J. [et al.]. Fault Location Detection in Underground Cables based on Wavelet-ANFIS Approach // 2021 IEEE PES/IAS Power Africa. 2021. P. 1–4. DOI: 10.1109/PowerAfrica52236.2021.9543184.26. (In Engl.).

26. Pravila ustroystva elektroustanovok [Rules for Electrical Installations]. 7th ed. Moscow, 2007. 549 p. (In Russ.).

27. Dobryagina O. A., Tyutikov V. V., Shadrikova T. Yu. [et al.]. Sposob vypolneniya adaptivnoy tokovoy zashchity ot zamykaniy na zemlyu v kabel’nykh setyakh 6–10 kV s izolirovannoy neytral’yu [Method of adaptive current protection against earth faults in 6–10 Kv cable networks with an insulated neutral] // Vestnik IGEU. Vestnik IGEU. 2019. No. 5. P. 31–39. DOI: 10.17588/2072-2672.2019.5.031-039. (In Russ.)

28. Patsyuk V. I., Berzan V. P., Rybakova G. A. Matematicheskaya model′ trekhfaznoy elektricheskoy linii s rasshcheplennymi fazami [Mathematical Model of a Three-Phase Electric Line with Split Phases] // Problemy regional’noy energetiki. Problems of the Regional Energetics. 2019. No. S1-3 (42). P. 53–67. DOI: 10.5281/zenodo.3239218. EDN: XVCDVS. (In Russ.).

29. Seriya 3.407.1-143. Zhelezobetonnyye opory VL 10 kV. Tipovyye stroitel’nyye konstruktsii, izdeliya uzly [Series 3.407.1-143. Reinforced Concrete Supports of 10 kV Overhead Line. Typical building structures, products assemblies]. Selenergoproekt, 1989. 60 p. (In Russ.).


Review

For citations:


Paramzin A.O. Development of selective line detection method with single-phase earth fault for industrial 6–35 kV networks with isolated neutral with non-sinusoidal load. Omsk Scientific Bulletin. 2023;(4):100-108. (In Russ.) https://doi.org/10.25206/1813-8225-2023-188-100-108. EDN: WIUEEM

Views: 7

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)