Optimization of the rotor of a magnetoelectric synchronous machine with pole tips shaped as elliptical arcs
https://doi.org/10.25206/1813-8225-2025-194-64-71
EDN: DEYXKD
Abstract
The article optimizes the rotor of a synchronous machine with tangentially magnetized magnets. The rotor pole tips have a shape resembling an arc of an ellipse. The simulation of the magnetic circuit of a synchronous machine is performed using the FEMM program. The optimization problem is solved using the coordinateby-coordinate descent method; for each coordinate axis, the minimum value of the objective function is determined by the dichotomy method. Permissible ranges of variation for the variable values, which define the dimensions of the rotor's structural elements, are considered as segment boundaries within the dichotomy method for each coordinate axis. The optimal size values of the permanent magnets and pole tips on the rotor, shaped as an elliptical arc for a four-pole machine, are calculated. The curves of the normal component of magnetic induction in the air gap of a synchronous machine with pole tips shaped as both a circular arc and an elliptical arc are compared. A mock-up of a four-pole electric machine with permanent magnets on the rotor is constructed, and the electromotive force curves of the stator winding at idle are obtained.
About the Authors
V. V. KharlamovRussian Federation
Kharlamov Viktor Vasilyevich - Doctor of Technical Sciences, Professor, Head of the Electrical Machines and General Electrical Engineering Department, Omsk State Transport University (OSTU), SPIN-code: 5093-8463. AuthorID (RSCI): 465264. AuthorID (SCOPUS): 7006332004.
Omsk
Yu. V. Moskalev
Russian Federation
Moskalev Yuriy Vladimirovich - Candidate of Technical Sciences, Associate Professor, Associate Professor of the Electrical Machines and General Electrical Engineering Department, OSTU, SPIN-code: 1422-1951. AuthorID (RSCI): 657144. AuthorID (SCOPUS): 57200088110.
Omsk
A. Yu. Milyutin
Russian Federation
MilyutiN Aleksey Yur’yevich - Postgraduate of the Electrical Machines and General Electrical Engineering Department, OSTU, SPIN-code: 3677-7130. AuthorID (RSCI): 1150404.
Omsk
References
1. Vol’dek A. I., Popov V. V. Elektricheskiye mashiny. Mashiny peremennogo toka [Electric cars. AC machines]. Saint Petersburg, 2008. 349 p. ISBN 978-5-469-01381-5. EDN: QMJUHP. (In Russ.).
2. Hughes A., Drury B. Electric motors and drives: fundamentals, types and applications. Burlington: Newnes, 2013. 440 p. ISBN-13: 978-0-7506-4718-2, ISBN-10: 0-7506-4718-3.
3. But D. A. Beskontaktnyye elektricheskiye mashiny [Noncontact electric machines]. Moscow, 1990. 416 p. ISBN 5-06-000719-7. (In Russ.).
4. Balagurov V. A., Galteev F. F. Elektricheskiye generatory s postoyannymi magnitami [Electric generators with permanent magnets]. Moscow, 1988. 280 p. ISBN 5-283-00556-9. (In Russ.).
5. Kuleshov E. V., Sergeyev V. D. Bystrokhodnyy magnitoelektricheskiy sinkhronnyy vetrogenerator [High-speed magnetoelectric synchronous wind generator] // Sovremennyye Tendentsii v Razvitii i Konstruirovanii Kollektornykh i Drugikh Elektromekhanicheskikh Preobrazovateley Energii. Omsk, 2003. P. 338–344. EDN: THTFUT. (In Russ.).
6. Tatevosyan A. A. Nauchnyye osnovy proyektirovaniya optimal’nykh konstruktsiy tikhokhodnykh sinkhronnykh generatorov s postoyannymi magnitami dlya vetroenergeticheskikh ustanovok [Scientific basis for design low-speed synchronous permanent magnet generators for wind power plants]. Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2021. No. 1 (175). P. 32–38. DOI: 10.25206/1813-8225-2021-175-32-38. EDN: OKNPKC. (In Russ.).
7. Gecha V. Ya., Zakharenko A. B., Nadkin A. K. Proyektirovaniye elektromashiny s postoyannymi magnitami, namagnichennymi po skheme Khal’bakha [Designing an electrical machine with permanent magnets magnetized according to halbach scheme]. Voprosy elektromekhaniki. Trudy VNIIEM. Electromechanical Matters. VNIIEM Studies. 2020. Vol. 177, no. 4. P. 3–10. EDN: NKFWTH. (In Russ.).
8. Shumov Yu. N., Safonov A. S. Sverhskorostnye i ul'traskorostnye sinhronnye mashiny s vozbuzhdeniem ot postoyannyh magnitov [Superhigh and ultrahighspeed synchronous machines excited from permanent magnets: state, design features, and development prospects]. Elektrichestvo. 2014. No. 3. P. 35–42. EDN: RWHHDD. (In Russ.).
9. Yusuke Miyajima. Brushless motor with permanent magnet rotor with magnetic poles with flux blocking parts/through holes towards the shaft forming angles. US patent 10,284,037B2; filed April 28th, 2015; published May 7th, 2019.
10. Vavilov V. E. Vybor magnitnoy sistemy rotora elektromekhanicheskikh preobrazovateley energii s vysokokoertsitivnymi postoyannymi magnitami [Selection of magnetic system of rotor of energy electromechanical converters with high-coercive permanent magnets]. Vestnik mashinostroyeniya. Russian Engineering Research. 2018. No. 1. P. 26–29. EDN: YNLWIH. (In Russ.).
11. Magin V. V. Osobennosti proyektirovaniya rotorov maloshchmnykh sinkhronnykh dvigateley s vozbuzhdeniyem ot postoyannykh magnitov [Design features of rotors of low-noise asynchronous motors with excitation from permanent magnets]. Voprosy elektromekhaniki. Trudy VNIIEM. Electromechanical Matters. VNIIEM Studies. 2015. Vol. 144, no. 1. P. 3–15. EDN: UXLBTF. (In Russ.).
12. Sato T., Igarashi H., Takahashi S. [et al.] Shape optimization of rotor in interior permanent magnet motor based on topology. IEEJ Transactions on Industry Applications. 2015. Vol. 135, no. 3. P. 291–298. DOI: 10.1541/ieejias.135.291.
13. Ishikawa T., Watanabe T., Kurita N. Effect of cleaning level on topology optimization of permanent magnet synchronous generator. IEEJ Journal of Industry Applications. 2017. Vol. 6, no. 6. P. 416–421. DOI: 10.1541/ieejjia.6.416.
14. Karnavas Y., Chasiotis I., Peponakis E. Permanent magnet synchronous motor design using grey wolf optimizer algorithm. International Journal of Electrical and Computer Engineering. 2016. Vol. 6, no. 3. P. 1353–1362. DOI: 10.11591/ijece.v6i3.9771.
15. Kharlamov V. V., Moskalev Yu. V., Milyutin A. Yu. [et al.]. Optimizatsiya velichiny neravnomernogo vozdushnogo zazora sinkhronnoy mashiny s postoyannymi magnitami na rotore [Uneven air gap optimization of synchronous machine with permanent rotor magnets]. Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2023. No. 2 (186). P. 112–118. DOI: 10.25206/1813-8225-2023-186-112-118. EDN: RAPVDG. (In Russ.).
16. Kharlamov V. V., Moskalev Yu. V., Milyutin A. Yu. Optimizatsiya polyusnykh nakonechnikov rotora sinkhronnoy mashiny s postoyannymi magnitami [Optimization of rotor pole tips synchronous machine with permanent magnets]. Izvestiya Transsiba. Journal of Transsib Railway Studies. 2023. No. 4 (56). P. 113–120. EDN: AYREDN. (In Russ.).
17. Finite element method magnetics. URL: http://www. femm.info/ (accessed: 15.01.2025).
18. Borne P., Popescu D., Filip F. [et al.]. Optimization in engineering sciences: exact methods. London: Wiley, 2013. 307 p. ISBN 9781848214323. DOI: 10.1002/9781118577899.
Review
For citations:
Kharlamov V.V., Moskalev Yu.V., Milyutin A.Yu. Optimization of the rotor of a magnetoelectric synchronous machine with pole tips shaped as elliptical arcs. Omsk Scientific Bulletin. 2025;(2):64-71. (In Russ.) https://doi.org/10.25206/1813-8225-2025-194-64-71. EDN: DEYXKD
JATS XML




















