Preview

Omsk Scientific Bulletin

Advanced search

The analysis of continuous admissible currents and active power losses in overhead power lines taking into account climatic factors

https://doi.org/10.25206/1813-8225-2023-188-84-92

EDN: WQGZWB

Abstract

Formulas for calculating continuous admissible currents and active power losses for overhead power transmission lines under conditions of natural and forced convection for insulated and non-insulated conductors are presented. The correct determination of maximum current loads plays an important role in the efficient use of the load capacity of power transmission lines, and the refinement of the calculation of active power losses is the basis for increasing the efficiency of energy transmission. The results obtained can be used in the selection of measures aimed at increasing the capacity of overhead lines and reducing energy losses.

About the Authors

E. V. Petrova
Omsk State Technical University
Russian Federation

Elena V. Petrova - Senior Lecturer of Power Supply for Industrial Enterprises Department, Omsk State Technical University (OmSTU).

Omsk

AuthorID (RSCI) 685250



S. S. Girshin
Omsk State Technical University
Russian Federation

Stanislav S. Girshin - Candidate of Technical Sciences, Associate Professor, Associate Professor of Power Supply for Industrial Enterprises Department, OmSTU.

Omsk

AuthorID (RSCI) 297584

AuthorID (SCOPUS) 57190579930



V. A. Krivolapov
Omsk State Technical University
Russian Federation

Vladislav A. Krivolapov - Graduate Student of Power Supply for Industrial Enterprises Department, OmSTU.

Omsk



V. N. Goryunov
Omsk State Technical University
Russian Federation

Vladimir N. Goryunov - Doctor of Technical Sciences, Professor, Head of Power Supply for Industrial Enterprises Department, OmSTU.

Omsk

AuthorID (RSCI) 302109

AuthorID (SCOPUS) 7003455231



V. M. Trotsenko
Omsk State Technical University
Russian Federation

Vladislav M. Trotsenko - Senior Lecturer of Power Supply for Industrial Enterprises Department, OmSTU.

Omsk

AuthorID (RSCI) 889516



References

1. Energy Outlook 2022 // bp. URL: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2022.pdf (accessed: 27.03.2023). (In Engl.).

2. World Energy Outlook 2022 // International energy agency. URL: https://ru.usembassy.gov/wp-content/uploads/sites/138/WorldEnergyOutlook20221.pdf (accessed: 27.03.2023). (In Engl.).

3. Masaud T. M., El-Saadany E. F. Optimal Wind DG Integration for Security Risk-Based Line Overload Enhancement: A Two Stage Approach // IEEE Access. 2020. Vol. 8. P. 11939–11947. DOI: 10.1109/ACCESS.2020.2965157. (In Engl.).

4. Vorotnitskiy V. E., Mogilenko A. V. Snizheniye poter’ elektroenergii v raspredelitel’nykh elektricheskikh setyakh: Sravnitel’nyy analiz zarubezhnogo i otechestvennogo opyta. Chast’ 1 [Reduction of electricity losses in distribution networks: Comparative analysis of foreign and domestic experience. Part 1] // Bibliotechka elektrotekhnika. Electrician's Library. 2021. No. 4-5. DOI: 10.34831/EP.2021.268.4.001. (In Russ.).

5. Snizheniye poter’ elektroenergii v raspredelitel’nykh elektricheskikh setyakh: Sravnitel’nyy analiz zarubezhnogo i otechestvennogo opyta. Chast’ 2 [Reduction of electricity losses in distribution networks: Comparative analysis of foreign and domestic experience. Part 2] // Bibliotechka elektrotekhnika. Electrician's Library. 2021. No. 11-12. DOI: 10.34831/EP.2021.275.11.001. (In Russ.).

6. Vorotnitskiy V. E., Mogilenko A. V. Snizheniye poter’ elektroenergii v raspredelitel’nykh elektricheskikh setyakh: Sravnitel’nyy analiz zarubezhnogo i otechestvennogo opyta [Reducing electricity losses in electricity distribution grids: a comparative analysis of foreign and domestic experience]. Moscow, 2023. 308 p. ISBN 978-5-9729-1388-6. (In Russ.).

7. DèveH.E.Importanceofmaterialsincompositeconductors// Electric Power Systems Research. 2019. Vol. 172. P. 290–295. DOI: 10.1016/j.epsr.2019.03.022. (In Engl.).

8. Fan F., Bell K., Infield D. Transient-state real-time thermal rating forecasting for overhead lines by an enhanced analytical method // Electric Power Systems Research. 2018. Vol. 167. P. 213–221. DOI: 10.1016/j.epsr.2018.11.003. (In Engl.).

9. Bedialauneta M. T., Albizu I., Fernandez E. [et al.]. Uncertainties in the Testing of the Coefficient of Thermal Expansion of Overhead Conductors // Energies. 2020. Vol. 13, no. 2. P. 1–13. DOI: 10.3390/en13020411. (In Engl.).

10. Martinez R., Manana M., Arroyo A. [et al.]. Dynamic Rating Management of Overhead Transmission Lines Operating under Multiple Weather Conditions // Energies. 2021. Vol. 14, no. 4. P. 59–63. DOI: 10.3390/en14041136. (In Engl.).

11. Ob utverzhdenii Energeticheskoy strategii Rossiyskoy Federatsii na period do 2035 goda: rasporyazheniye Pravitel’stva Rossiyskoy Federatsii ot 9 iyunya 2020 g. № 1523-r [On Approval of the Energy Strategy of the Russian Federation until 2035: Decree of the Government of the Russian Federation of 9 June 2020 No. 1523-r]. Available at «Consultant Plus» System. (In Russ.).

12. Varygina A. O., Savina N. V. Specification of the Method for Calculating the Long-Term Permissible Current of Overhead Line Conductors // 2020 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 2020. P. 1–8. DOI: 10.1109/ICIEAM48468.2020.9112085. (In Engl.).

13. Iglesias J., Watt G., Douglass D. Guide for Thermal Rating Calculations of Overhead Lines // CIGRE. 2014. 95 p. (In Engl.).

14. IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors // IEEE. 2013. DOI: 10.1109/IEEESTD.2013.6692858. (In Engl.).

15. STO 56947007-29.240.55.143-2013. Metodika rascheta predel’nykh tokovykh nagruzok po usloviyam sokhraneniya mekhanicheskoy prochnosti provodov i dopustimykh gabaritov vozdushnykh liniy: Standart organizatsii OAO «FSK EES» [STO 56947007-29.240.55.143-2013. Calculation methodology for current limit loads on conditions of mechanical strength of wires and permissible dimensions of overhead lines: Standard of the organization «FGC UES»]. Moscow, 2013. 42 p. (In Russ.).

16. Karimi S., Musilek P., Knight A. M. Dynamic thermal rating of transmission lines: A review // Renewable and Sustainable Energy Reviews. 2018. Vol. 91. P. 600–612. DOI: 10.1016/j.rser.2018.04.001. (In Engl.).

17. Hathout I., Callery K., Trac J. [et al.]. Impact of Thermal Stresses on the End of Life of Overhead Transmission Conductors // 2018 IEEE Power & Energy Society General Meeting (PESGM). 2018. P. 1–5. DOI: 10.1109/PESGM.2018.8586574. (In Engl.).

18. Morteza A., Sadipour M., Fard R. S. [et al.]. A dagging-based deep learning framework for transmission line flexibility assessment // IET Renewable Power Generation. 2022. Vol. 17, no. 5. P. 1092–1105. DOI: 10.1049/rpg2.12663. (In Engl.).

19. Sarajlić M., Pihler J., Sarajlić N. [et al.]. Identification of the Heat Equation Parameters for Estimation of a Bare Overhead Conductor’s Temperature by the Differential Evolution Algorithm // Energies. 2018. Vol. 11. P. 1–17. DOI: 10.3390/en11082061. (In Engl.).

20. Petrova E. V. Otsenka vliyaniya solnechnoy radiatsii na nagruzochnyye poteri aktivnoy moshchnosti v vysokotemperaturnykh i samonesushchikh izolirovannykh provodakh liniy elektroperedachi [Assessment of solar radiation effect on real-power losses under load in high-temperature and self-supporting insulated wires of power lines] // Izvestiya Transsiba. Journal of Transsib Railway Studies. 2019. No. 3 (39). P. 134–145. (In Russ.).

21. Zhelezko Yu. S. Poteri elektroenergii. Reaktivnaya moshchnost’. Kachestvo elektroenergii: rukovodstvo dlya prakticheskikh raschetov [Electricity losses. Reactive power. Electricity quality: a guide for practical calculations]. Moscow, 2016. 456 p. ISBN 978-5-93196-958-9. (In Russ.).

22. Petrova E. V. Raschet poter’ elektricheskoy energii i dopustimykh znacheniy toka v vysokotemperaturnykh i samonesushchikh izolirovannykh provodakh vozdushnykh liniy elektroenergeticheskikh sistem v usloviyakh estestvennoy konvektsii s uchetom pogodnykh faktorov: svidetel’stvo o registratsii programmy dlya EVM [Calculation of electric energy losses and allowable current values in high-temperature and self-supporting insulated conductors of overhead lines of electric power systems under conditions of natural convection with regard to weather factors: egistration certificate of a computer programme]. No. 2019619360. (In Russ.).

23. Petrova E. V. Opredeleniye poter’ elektricheskoy energii i dopustimykh znacheniy toka v vysokotemperaturnykh i samonesushchikh izolirovannykh provodakh vozdushnykh liniy s uchetom pogodnykh izmeneniy: svidetel’stvo o registratsii programmy dlya EVM [Determination of power losses and current carrying capacities of high-temperature and self-supporting insulated overhead line conductors, taking weather-related changes into account: registration certificate of a computer programme]. No. 2019660200. (In Russ.).

24. Goryunov V. N., Girshin S. S., Kuznetsov E. A. [et al.]. A Mathematical Model of Steady-State Thermal Regime of Insulated Overhead Line Conductors // 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). 2016. DOI: 10.1109/EEEIC.2016.7555481. (In Engl.).

25. Gómez F. Á., María J. M., Puertas D. G. [et al.]. Numerical study of the thermal behaviour of bare overhead conductors in electrical power lines // World Scientific and Engineering Academy and Society (WSEAS). 2011. P. 149–153. (In Engl.).


Review

For citations:


Petrova E.V., Girshin S.S., Krivolapov V.A., Goryunov V.N., Trotsenko V.M. The analysis of continuous admissible currents and active power losses in overhead power lines taking into account climatic factors. Omsk Scientific Bulletin. 2023;(4):84-92. (In Russ.) https://doi.org/10.25206/1813-8225-2023-188-84-92. EDN: WQGZWB

Views: 5

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)