Preview

Omsk Scientific Bulletin

Advanced search

Dynamics of a mechanical system with nonlinear elastic suspension and spectral analysis of the results

https://doi.org/10.25206/1813-8225-2023-187-15-22

EDN: EHSGYX

Abstract

The article considers the dynamics of a nonlinear mechanical system under the action of a kinematic perturbation on it. The object's vibration isolation system is described by a rigid cubic power characteristic and is based on compensation of external perturbations — the introduction of an additional elastic element with negative stiffness into the suspension. Numerical modeling of the system is performed, the results of which are analyzed by the method of spectral analysis, based on the representation of the correlation function on a small time interval by a square polynomial.

As a result of the analysis, it is found that in the pre-resonant and resonant regions, the general solution should consist of three components: a subharmonic of the order of 1/3, the fundamental harmonic, and the third harmonic. It is noted that only the subharmonic of the order of 1/3 and the fundamental harmonic are important in the resonant zone.

It is also noted that even simple nonlinear mechanical systems in the study of dynamics should use approximate analytical and numerical methods in combination with spectral analysis, since traditional methods of nonlinear mechanics are not adapted to solving problems taking into account a relatively large number of harmonic components that appear due to nonlinearity.

About the Authors

V. A. Nekhaev
Omsk State Transport University
Russian Federation

NEKHAEV Victor Alekseevich, Doctor of Technical Sciences, Professor, Professor of Theoretical and Applied Mechanics Department

Omsk

AuthorID (RSCI): 394940

 



V. A. Nikolaev
Omsk State Transport University
Russian Federation

NIKOLAEV Victor Aleksandrovich, Doctor of Technical Sciences, Professor, Head of Theoretical and Applied Mechanics Department

Omsk

AuthorID (RSCI): 395978



A. N. Smalev
Omsk State Transport University
Russian Federation

SMALEV Aleksandr Nikolaevich, Candidate of Technical Sciences, Associate Professor of Theoretical and Applied Mechanics Department

Omsk

AuthorID (RSCI): 651442



K. O. Seryakov
Omsk State Transport University
Russian Federation

SERYAKOV Kirill Olegovich, Graduate Student of Theoretical and Applied Mechanics Department

Omsk

AuthorID (RSCI): 1119026



References

1. Shchipanov G. V. Teoriya i metody postroeniya avtomaticheskih regulyatorov [Theory and methods of construction of automatic regulators] // Avtomatika i telemekhanika. Automation and Telemechanics. 1939. No. 1. P. 4–37. (In Russ.).

2. Luzin N. N. K izucheniyu matrichnoj teorii differencial'nyh uravnenij [To the study of the matrix theory of differential equations] // Avtomatika i telemekhanika. Automation and Telemechanics. 1940. No. 5. P. 4–66. (In Russ.).

3. Petrov B. N. O realizuyemosti usloviy invariantnosti [On the feasibility of invariance conditions] // Teoriya invariantnosti i yeye primeneniye v avtomaticheskikh sistemakh. The Theory of Invariance and its Application in Automatic Systems. Moscow, 1959. P. 59–80. (In Russ.).

4. Alabuzhev P. M., Gritchin A. A., Kim L. I. [et al.]. Vibrozashchitnyye sistemy s kvazinulevoy zhestkost′yu [Vibration protection systems with quasi-zero stiffness] / ed. by K. M. Ragul′skisa. Leningrad, 1986. 100 р. (In Russ.).

5. Nekhaev V. A., Nikolaev V. A. Synthesis of invariant vibroprotection system (theory and practice) // Nonlinear vibration problems: proceedings of Twelve International Scientific Conference. Warszawa: DWH-Polish Sientific Publishers, 1993. Vol. 25. P. 224–236. (In Engl.)

6. Buryan Y. A., Sorokin V. N., Galuza Y. F., Polyakov S. N. Aktivnaya sistema vibroizolyacii s ekstremal'nym regulyatorom [Active vibration isolation system with extreme control] // Vestnik mashinostroenie. Bulletin of Mechanical Engineering. 2015. No. 2. P. 37–40. (In Russ.).

7. Nekhaev V. A., Nikolaev V. A., Zakernichnaya N. V., Baglaichuk S. V. Vibrozashchita cheloveka-operatora na osnove primeneniya principa regulirovaniya po vozmushcheniyu [Vibration protection of a human operator based on the application of the principle of regulation by perturbation] // Problemy mashinovedeniya. Mechanical Science and Technology Update. Omsk, 2018. Р. 93–97. ISBN 978-5-8149-2600-5. (In Russ.).

8. Nikolaev V. А., Nekhaev V. А. Dinamika sistemy s kompensiruyushchej svyaz'yu i relaksacionnym treniem [Dynamics system with compensating and oscillation damper with spring] // Problemy mekhaniki sovremennyh mashin. Issues on Modern Machines Mechanics. Ulan-Ude, 2018. Vol. 1. Р. 274–277. ISBN 978-5-6041868-1-7. (In Russ.).

9. Rybak L. A., Sinev A. V., Pashkov A. I. Sintez aktivnyh sistem vibroizolyacii na kosmicheskih ob"ektah [Synthesis of active vibration isolation systems on space objects]. Moscow, 1997. 159 p. (In Russ.).

10. Cunningham V. J. Introduction to nonlinear analysis. New York: McGraw-Hill Book Company, Inc., 1958. 349 p. (In Engl.).

11. Kryukov B. I. Vynuzhdennye kolebaniya sushchestvenno nelinejnyh sistem [Forced oscillations of essentially nonlinear systems]. Moscow, 1984. 216 p. (In Russ.).

12. Kuznetsov N. V. Theory of hidden oscillations and stability of control systems // Journal of Computer and Systems Sciences International. 2020. Vol. 59, no. 5. P. 647–668. (In Engl.).

13. Biderman V. L. Prikladnaya teoriya mekhanicheskih kolebanij [Applied theory of mechanical vibrations]. Moscow, 1972. 416 p. (In Russ.).

14. Kauderer G. Nelinejnaya mekhanika [Nonlinear mechanics]. Moscow, 1961. 778 p. (In Russ.).

15. Kolovsky M. Z. Nelinejnaya teoriya vibrozashchitnyh sistem [Nonlinear theory of vibration protection systems]. Moscow, 1966. 320 p. (In Russ.).

16. Magnus K. Kolebaniya: Vvedenie v issledovanie kolebatel'nyh sistem [Introduction to the study of oscillatory systems]. Moscow, 1982. 304 p. (In Russ.).

17. Neumark Yu. I. Matematicheskoe modelirovanie kak nauka i iskusstvo [Mathematical modeling as science and art]. Nizhny Novgorod, 2010. 420 p. ISBN 978-5-91326-145-8 (In Russ.).

18. Bendatt Dzh., Pirsol A. Izmereniye i analiz sluchaynykh protsessov [Measurement and analysis of random processes] / trans. from Engl. G. V. Matushevskogo, V. E. Privalovskogo. Moscow, 1971. 408 p. (In Russ.).


Review

For citations:


Nekhaev V.A., Nikolaev V.A., Smalev A.N., Seryakov K.O. Dynamics of a mechanical system with nonlinear elastic suspension and spectral analysis of the results. Omsk Scientific Bulletin. 2023;(3):15-22. (In Russ.) https://doi.org/10.25206/1813-8225-2023-187-15-22. EDN: EHSGYX

Views: 5

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)