Cyclic surfaces accompanying non-ruled quadrics of rotation
https://doi.org/10.25206/1813-8225-2023-187-23-29
EDN: BAKBPA
Abstract
The paper considers the shaping of cyclic surfaces based on nonlinear rotation, in which the axis of rotation and the generatrix in the general case are three-dimensional smooth curves. As a tool for shaping surfaces of non-linear rotation, the method of the accompanying Frenet trihedron, known in the differential geometry of curved lines, is used. The geometric scheme of surface shaping is based on a construction that includes: a curvilinear axis of rotation and a one-parameter set of its normal planes; a generatrix whose points describe in normal planes circular trajectories centered on a curvilinear axis. A mathematical model of shaping the surface of non-linear rotation for the general case of specifying the axis of rotation and the generatrix is given. On the basis of this model, test examples of the formation of surfaces of nonlinear rotation, which are cyclic surfaces, each of which accompanies the corresponding nonlinear quadric of rotation, are considered. In the examples of shaping, the original rectilinear axis of a non-linear quadric of revolution and its generating line, a second-order curve, are functionally interchanged: the secondorder curve becomes the rotation axis, and the rectilinear axis becomes the generatrix.
The resulting family of surfaces of non-linear rotation belongs to the well-known class in the theory of analytic surfaces "Normal cyclic surfaces". It complements this class and fundamentally differs in the method of shaping
About the Authors
K. L. PanchukRussian Federation
PANCHUK Konstantin Leonidovich, Doctor of Technical Sciences, Associate Professor, Professor of Engineering Geometry and CAD Department
Omsk
AuthorID (RSCI): 501163
AuthorID (SCOPUS): 55857766100
ResearcherID: S-2788-2017
T. M. Myasoedova
Russian Federation
MYASOEDOVA Tatyana Mikhaylovna, Candidate of Technical Sciences, Senior Lecturer of Engineering Geometry and CAD Department
Omsk
AuthorID (RSCI): 686836
AuthorID (SCOPUS): 57201776004
ResearcherID: E-7505-2014
E. V. Lyubchinov
Russian Federation
LYUBCHINOV Evgeniy Vladimirovich, Candidate of Technical Sciences, Associate Professor of Engineering Geometry and CAD Department
Omsk
AuthorID (RSCI): 917932
AuthorID (SCOPUS): 57199399265
ResearcherID: D-1882-2019
References
1. Krivoshapko S. N., Ivanov V. N. Entsiklopediya analiticheskikh poverkhnostey: boleye 500 poverkhnostey, 38 klassov: matematikam, inzheneram, arkhitektoram [Encyclopedia of analytical surfaces: more than 500 surfaces, 38 classes: for mathematicians, engineers, architects]. Moscow, 2010. 556 p. ISSN 1815-5235; 978-5-397-00985-0. (In Russ.).
2. Krivoshapko S. N., Ivanov V. N. Klassifikatsiya tsiklicheskikh poverkhnostey [Classification of cyclic surfaces] // Stroitel’naya mekhanika inzhenernykh konstruktsiy i sooruzheniy. Structural Mechanics of Engineering Constructions and Buildings. 2006. No. 2. P. 25–34. (In Russ.).
3. Krivoshapko S., Hyeng C. Geometrical research of rare types of cyclic surfaces // International Journal of Research and Reviews in Applied Sciences. 2012. Vol. 12 (3). Р. 346–359. (In Engl.).
4. Beglov I. A., Rustamyan V. V. Metod vrashcheniya geometricheskikh ob”yektov vokrug krivolineynoy osi [Method of rotation of geometrical objects around the curvilinear axis] // Geometriya i grafika. Geometry and Graphics. 2017. No. 3. P. 45–50. DOI: 10.12737/article_59bfa4eb0bf488.99866490. (In Russ.).
5. Beglov I. A. Computer geometric modeling of quasirotation surfaces // Journal of Physics: Conference Series. 2021. Vol. 1901. P. 16–17. DOI: 10.1088/1742-6596/1901/1/012057. (In Engl.).
6. Grigor′yev M. I. Postroyeniye obobshchennykh poverkhnostey vrashcheniya [Construction of generalised rotation surfaces] // Seminar «DNA&CAGD». Izbrannyye doklady. Seminar «DNA&CAGD». Izbrannyye Doklady. 2007. P. 1–7. (In Russ.).
7. Grigor′yev M. I., Malozemov V. N. Sostavnyye krivyye i poverkhnosti Bez′ye. Analiticheskiy podkhod [Compound curves and Bézier surfaces. The analytical approach]. Lambert Academic Publishing, 2010. 132 p. ISBN 978-3-8433-0323-1. (In Russ.).
8. Osipov V. A. Mashinnyye metody proyektirovaniya nepreryvnokarkasnykh poverkhnostey [Machine-assisted design methods for continuous frame surfaces]. Moscow, 1979. 248 p. (In Russ.).
9. Osipov V. A., Osipova L. I. Teoreticheskiye osnovy karkasnokinematicheskogo metoda napravlyayushchey linii [Theoretical foundations of the frame-kinematic method of the guide line] // Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika. Izvestiya Vysshikh Uchebnykh Zavedenii. Aviatsionnaya Tekhnika. 1980. No. 4. P. 48–53. (In Russ.).
10. Markin L. V., Korn G. V., Kui M. Kh. [et al.]. Diskretnyye modeli geometricheskogo modelirovaniya komponovki aviatsionnoy tekhniki [Discrete models of aircraft equipment layout geometric modeling] // Trudy MAI. Proceedings of MAI. 2016. No. 86. 16 p. EDN VUDSTD. (In Russ.).
11. Khtun N. N. Razrabotka i issledovaniye retseptornykh geometricheskikh modeley telesnoy trassirovki [Development and research of receptive geometric models of body tracing]. Moscow, 2014. 26 p. (In Russ.).
12. Ivanov V. N., Shmeleva A. A. Geometriya i formoobrazovaniye tonkostennykh prostranstvennykh konstruktsiy na osnove normal′nykh tsiklicheskikh poverkhnostey [Geometry and formation of the thin-walled space shell structures on the base of normal cyclic surfaces] // Stroitel′naya mekhanika inzhenernykh konstruktsiy i sooruzheniy. Structural Mechanics of Engineering Constructions and Buildings. 2016. No. 6. P. 3–8. (In Russ.).
13. Ivanov V. N., Rynkovskaya M. I. Primeneniye tsiklicheskikh poverkhnostey v arkhitekture zdaniy, konstruktsiy i izdeliy [Application of circular surfaces to the architecture of the buildings, structures and products] // Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Inzhenernyye issledovaniya. RUDN Journal of Engineering Research. 2015. No. 3. P. 111–119. (In Russ.).
14. Blyashke V. Differentsial′naya geometriya i geometricheskiye osnovy teorii otnositel′nosti Eynshteyna. V 2 t. T. 1. Elementarnaya differentsial′naya geometriya. [Differential geometry and the geometrical foundations of Einstein's theory of relativity. In 2 vols. Vol. 1. Elementary differential geometry]. Moscow; Leningrad, 1935. 330 p. (In Russ.).
15. Kartan E. Teoriya konechnykh nepreryvnykh grupp i differentsial′naya geometriya, izlozhennyye metodom podvizhnogo repera [Theory of finite and continuous groups and differential geometry treated by the moving frame method] / trans. from Fr. S. P. Finikova. Volgograd, 1998. 368 p. (In Russ.).
16. Zeyliger D. N. Kompleksnaya lineychataya geometriya [Complex linear geometry]. Moscow; Leningrad, 1934. 196 p. (In Russ.).
17. Yakubovskiy A. M. Nekotoryye voprosy konstruirovaniya poverkhnostey s pomoshch′yu trekhgrannika Frene [Some issues of surface construction with the Fresnier trihedron] // Trudy un-ta Druzhby Narodov im. P. Lumumby. Proceedings of the P. Lumumba Peoples' Friendship University. Moscow, 1967. Vol. 26. P. 23–32. (In Russ.).
18. Panchuk K. L., Niteyskiy A. S. Contact of the Ruled Nondevelopable Surfaces // Proceedings of the 16th International Conference on Geometry and Graphics, 4–8 August 2014. Innsbruck: University Press, 2014. Р. 216–223. (In Engl.).
19. Niteyskii A. S. Konstruirovaniye torsovoy poverkhnosti metodom podvizhnogo trekhgrannika Frene [Design of ruled surfaces by moving frenet trihedron] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2013. No. 2 (120). P. 151–153. (In Russ.).
20. Korchagin D. S., Panchuk K. L. Metod geometrodinamicheskogo formoobrazovaniya lineychatykh polos [Methods of geometry-dynamic shaping linear strips] // Vestnik KuzGTU. Bulletin of the Kuzbass State Technical University. 2013. Issue 6 (100). P. 89–92. (In Russ.).
21. Korchagin D. S., Panchuk K. L. Forming of the Spline Similar Linear Strip // Proceedings of the 16th International Conference on Geometry and Graphics. Innsbruck, Austria. 2014. P. 428–436. (In Engl.).
Review
For citations:
Panchuk K.L., Myasoedova T.M., Lyubchinov E.V. Cyclic surfaces accompanying non-ruled quadrics of rotation. Omsk Scientific Bulletin. 2023;(3):23-29. (In Russ.) https://doi.org/10.25206/1813-8225-2023-187-23-29. EDN: BAKBPA
JATS XML




















