Greenhouse climate control system based on fuzzy logic
https://doi.org/10.25206/1813-8225-2024-190-59-68
EDN: CDPHLB
Abstract
Paper is devoted to development and research of the fifth generation greenhouse climate automatic control system. This system is based on fuzzy logic toolbox and it allows to automate control processes using the latest developments in this field. In the work the concept of «microclimate of greenhouse complex» for the region of the risky agricultural zone when growing large strawberries in a closed ground.
About the Authors
L. A. PayukRussian Federation
Payuk Lyubov Anatolyevna, Candidate of Technical Sciences, Associate Professor of Electric Power Engineering and Electrical Engineering Department
AuthorID (RSCI): 555556
AuthorID (SCOPUS): 57160434900
Tomsk
N. A. Voronina
Russian Federation
Voronina Natalya Alekseyevna, Candidate of Technical Sciences, Associate Professor of Electric Power Engineering and Electrical Engineering Department
AuthorID (RSCI): 790645
AuthorID (SCOPUS): 57159363700
ResearcherID: I-9992-2018
Tomsk
A. D. Umurzakova
Russian Federation
Umurzakova Anara Daukenovna, Candidate of Technical Sciences, Senior Lecturer of Electric Power Engineering and Electrical Engineering Department
AuthorID (RSCI): 834837
AuthorID (SCOPUS): 56485976200
Tomsk
E. E. Lazutkina
Russian Federation
Lazutkina Elena Evgenyevna, Senior Lecturer of Electric Power Engineering and Electrical Engineering Department
AuthorID (RSCI): 891147
AuthorID (SCOPUS): 56486119300
ResearcherID: AAI-5296-2020
Tomsk
K. V. Khatsevskiy
Russian Federation
Khatsevskiy Konstantin Vladimirovich, Doctor of Technical Sciences, Associate Professor, Professor of Electrical Engineering Department
AuthorID (RSCI): 465857
AuthorID (SCOPUS): 56503931800
ResearcherID: A-4002-2016
Omsk
References
1. Importozameshcheniye v teplichnoy otrasli Rossii – faktory razvitiya [Import substitution in the Russian greenhouse industry — development factors] // Agrobiznes. Agribusiness. URL: https://www.agbz.ru/articles/importozameshchenie-v-teplichnoy-otrasli-rossii-faktory-razvitiya/ (accessed: 15.02.2023). (In Russ.).
2. Volkova I. N. Teplichnaya otrasl’ khozyaystva Rossii i faktory, vliyayushchiye na ee razvitiye i razmeshcheniye [Greenhouse industry of Russia and factors influencingits development and localization] // Geograficheskaya sreda i zhivyye sistemy. Geographical Environment and Living Systems. 2021. No. 1. P. 93–109. DOI: 10.18384/2712-7621-2021-1-93-109. EDN: WOQICA. (In Russ.).
3. Boyartseva V. K. Mikroklimat teplits. Spravochnik sadovoda [Greenhouse microclimate. Gardener’s Guide]. 2010. 420 p. (In Russ.).
4. Sobolev A. V. Effektivnost’ regulirovaniya mikroklimata v teplitsakh c pomoshch’yu elektrichestva [The efficiency of the microclimate regulation in greenhouses with the help of electricity] // Vestnik KrasGAU. The Bulletin of KrasGAU. 2014. No. 4. P. 154–156. EDN: RXMUDJ. (In Russ.).
5. Olsson G., Piani D. Tsifrovyye sistemy avtomatizatsii i upravleniya [Digital automation and control systems]. Saint Petersburg, 2001. 557 p. ISBN 5-7940-0069-4. (In Russ.).
6. Sistemy upravleniya mikroklimatom [Climate control systems] // Profit-Agro. Profit-Agro. URL: http://profit-agro.ru/sistemy/sistemy-upravleniya-mikroklimatom/ (accessed: 10.03. 2023). (In Russ.).
7. Semenov V. G., Krushel E. G. Matematicheskaya model’ mikroklimata teplitsy [Mathematical model of a microclimate of a greenhouse] // Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. Izvestia Volgograd State Technical University. 2009. No. 6 (54). P. 32–35. EDN: KUAHMF. (In Russ.).
8. Belov S. M. Sistema okhlazhdeniya v teplichnykh kompleksakh. Mikroklimat v teplitsakh [Cooling system in greenhouse complexes. Microclimate in greenhouses] // Aspirant. Aspirant. 2021. No. 5 (62). P. 55–58. EDN: ELFHPU. (In Russ.).
9. Kulmamirov S. A., Kalabayev A. A. Novyy podkhod upravleniya rezhimami mikroklimata v teplitsakh [A new approach to managing microclimate regimes in greenhouses] // Sinergiya nauk. Synergy of Sciences. 2021. No. 59. P. 308–327. EDN: QZACBF. (In Russ.).
10. Tsokur D. S. Sistema stabilizatsii kislotnosti pochvy pri vyrashchivanii tomatov v usloviyakh zakrytogo grunta [The stabilization system of soil acidity when growing tomatoes in a greenhouse] // Nauchnyy zhurnal KubGAU. Scientific Journal of KubSAU. 2013. No. 93. P. 998–1020. EDN: PWFDQK. (In Russ.).
11. Peshko M. S. Adaptivnaya sistema upravleniya parametrami mikroklimata protsessov proizvodstva i khraneniya pishchevykh produktov [Adaptive system for controlling microclimate parameters of food production and storage processes]. Moscow, 2015. 22 p. (In Russ.).
12. Zmiyeva K. A. Avtomaticheskaya sistema kontrolya i regulirovaniya mikroklimata teplichnogo kompleksa [Automatic system for monitoring and regulating the microclimate of a greenhouse complex] // Avtomatizirovannyy elektroprivod i promyshlennaya elektronika. Automated Electric Drive and Industrial Electronics. Novokuznetsk, 2018. P. 49–53. EDN: IYPJFU. (In Russ.).
13. Yuran S. I., Vershinin M. N. Sovershenstvovaniye sistemy regulirovaniya mikroklimata na osnove nechetkoy logiki [Improvement of the microclimate control system based on fuzzy logic] // Vestnik NGIEI. Bulletin NGIEI. 2019. No. 9 (100). P. 33–45. EDN: FYYJWA. (In Russ.).
14. Averkin A. N. Nechetkiye mnozhestva v modelyakh upravleniya i iskusstvennogo intellekta: kniga po trebovaniyu [Fuzzy sets in control models and artificial intelligence: book on demand]. Moscow, 2013. 312 p. (In Russ.).
15. Panfilov A. E., Krushel E. G. Primeneniye Matlabprilozheniya PDEapp dlya modelirovaniya dinamicheskikh protsessov s raspredelennymi parametrami [Using the Matlab application PDEapp for modeling dynamic processes with distributed parameters] // Innovatsionnyye tekhnologii v obuchenii i proizvodstve. Innovative Technologies in Training and Production. Volgograd, 2021. Vol. 1. P. 118–121. EDN: LOETOQ. (In Russ.).
16. Shilkina S. V., Fokina E. N. Kontroller nechetkoy logiki v upravlenii tekhnologicheskimi protsessami [The controller of fuzzy logic in the management of technological processes] // Vestnik SibADI. The Russian Automobile and Highway Industry Journal. 2018. Vol. 15, no. 1 (59). P. 106–114. EDN: YTMCNS. (In Russ.).
17. Ali R. B., Aridhi E., Mami A. [et al.]. Fuzzy logic controller of temperature and humidity inside an agricultural greenhouse Environmental Science // 7th International Renewable Energy Congress. Hammamet, 2016. P. 1–6. DOI: 10.1109/IREC.2016.7478929. (In Engl.).
18. Mohamed S., Hameed I. A. A GA-Based Adaptive NeuroFuzzy Controller for Greenhouse Climate Control System // Alexandria Engineering Journal. 2018. Vol. 57 (2). P. 773–779. DOI: 10.1016/j.aej.2014.04.009. (In Engl.).
19. Nicolosi G., Volpe R., Messineo A. An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse // Energies. 2017. Vol. 10, no. 5. P. 1–17. DOI: 10.10.3390/en10050722. (In Engl.).
20. Li G., Tang L., Zhang X. [et al.]. Factors affecting greenhouse microclimate and its regulating techniques // 8th International Conference on Environment Science and Engineering. Barcelona, 2018. Vol. 167. Р. 12–19. DOI: 10.1088/1755-1315/167/1/012019. (In Engl.).
Review
For citations:
Payuk L.A., Voronina N.A., Umurzakova A.D., Lazutkina E.E., Khatsevskiy K.V. Greenhouse climate control system based on fuzzy logic. Omsk Scientific Bulletin. 2024;10(2):59-68. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-59-68. EDN: CDPHLB
JATS XML




















