Preview

Omsk Scientific Bulletin

Advanced search

Greenhouse climate control system based on fuzzy logic

https://doi.org/10.25206/1813-8225-2024-190-59-68

EDN: CDPHLB

Abstract

Paper is devoted to development and research of the fifth generation greenhouse climate automatic control system. This system is based on fuzzy logic toolbox and it allows to automate control processes using the latest developments in this field. In the work the concept of «microclimate of greenhouse complex» for the region of the risky agricultural zone when growing large strawberries in a closed ground.

About the Authors

L. A. Payuk
National Research Tomsk Polytechnic University
Russian Federation

Payuk Lyubov Anatolyevna, Candidate of Technical Sciences, Associate Professor of Electric Power Engineering and Electrical Engineering Department

AuthorID (RSCI): 555556

AuthorID (SCOPUS): 57160434900

Tomsk



N. A. Voronina
National Research Tomsk Polytechnic University
Russian Federation

Voronina Natalya Alekseyevna, Candidate of Technical Sciences, Associate Professor of Electric Power Engineering and Electrical Engineering Department

AuthorID (RSCI): 790645

AuthorID (SCOPUS): 57159363700

ResearcherID: I-9992-2018

Tomsk



A. D. Umurzakova
National Research Tomsk Polytechnic University
Russian Federation

Umurzakova Anara Daukenovna, Candidate of Technical Sciences, Senior Lecturer of Electric Power Engineering and Electrical Engineering Department

AuthorID (RSCI): 834837

AuthorID (SCOPUS): 56485976200

Tomsk



E. E. Lazutkina
National Research Tomsk Polytechnic University
Russian Federation

Lazutkina Elena Evgenyevna, Senior Lecturer of Electric Power Engineering and Electrical Engineering Department

AuthorID (RSCI): 891147

AuthorID (SCOPUS): 56486119300

ResearcherID: AAI-5296-2020

Tomsk



K. V. Khatsevskiy
Omsk State Technical University
Russian Federation

Khatsevskiy Konstantin Vladimirovich, Doctor of Technical Sciences, Associate Professor, Professor of Electrical Engineering Department

AuthorID (RSCI): 465857

AuthorID (SCOPUS): 56503931800

ResearcherID: A-4002-2016

Omsk 



References

1. Importozameshcheniye v teplichnoy otrasli Rossii – faktory razvitiya [Import substitution in the Russian greenhouse industry — development factors] // Agrobiznes. Agribusiness. URL: https://www.agbz.ru/articles/importozameshchenie-v-teplichnoy-otrasli-rossii-faktory-razvitiya/ (accessed: 15.02.2023). (In Russ.).

2. Volkova I. N. Teplichnaya otrasl’ khozyaystva Rossii i faktory, vliyayushchiye na ee razvitiye i razmeshcheniye [Greenhouse industry of Russia and factors influencingits development and localization] // Geograficheskaya sreda i zhivyye sistemy. Geographical Environment and Living Systems. 2021. No. 1. P. 93–109. DOI: 10.18384/2712-7621-2021-1-93-109. EDN: WOQICA. (In Russ.).

3. Boyartseva V. K. Mikroklimat teplits. Spravochnik sadovoda [Greenhouse microclimate. Gardener’s Guide]. 2010. 420 p. (In Russ.).

4. Sobolev A. V. Effektivnost’ regulirovaniya mikroklimata v teplitsakh c pomoshch’yu elektrichestva [The efficiency of the microclimate regulation in greenhouses with the help of electricity] // Vestnik KrasGAU. The Bulletin of KrasGAU. 2014. No. 4. P. 154–156. EDN: RXMUDJ. (In Russ.).

5. Olsson G., Piani D. Tsifrovyye sistemy avtomatizatsii i upravleniya [Digital automation and control systems]. Saint Petersburg, 2001. 557 p. ISBN 5-7940-0069-4. (In Russ.).

6. Sistemy upravleniya mikroklimatom [Climate control systems] // Profit-Agro. Profit-Agro. URL: http://profit-agro.ru/sistemy/sistemy-upravleniya-mikroklimatom/ (accessed: 10.03. 2023). (In Russ.).

7. Semenov V. G., Krushel E. G. Matematicheskaya model’ mikroklimata teplitsy [Mathematical model of a microclimate of a greenhouse] // Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. Izvestia Volgograd State Technical University. 2009. No. 6 (54). P. 32–35. EDN: KUAHMF. (In Russ.).

8. Belov S. M. Sistema okhlazhdeniya v teplichnykh kompleksakh. Mikroklimat v teplitsakh [Cooling system in greenhouse complexes. Microclimate in greenhouses] // Aspirant. Aspirant. 2021. No. 5 (62). P. 55–58. EDN: ELFHPU. (In Russ.).

9. Kulmamirov S. A., Kalabayev A. A. Novyy podkhod upravleniya rezhimami mikroklimata v teplitsakh [A new approach to managing microclimate regimes in greenhouses] // Sinergiya nauk. Synergy of Sciences. 2021. No. 59. P. 308–327. EDN: QZACBF. (In Russ.).

10. Tsokur D. S. Sistema stabilizatsii kislotnosti pochvy pri vyrashchivanii tomatov v usloviyakh zakrytogo grunta [The stabilization system of soil acidity when growing tomatoes in a greenhouse] // Nauchnyy zhurnal KubGAU. Scientific Journal of KubSAU. 2013. No. 93. P. 998–1020. EDN: PWFDQK. (In Russ.).

11. Peshko M. S. Adaptivnaya sistema upravleniya parametrami mikroklimata protsessov proizvodstva i khraneniya pishchevykh produktov [Adaptive system for controlling microclimate parameters of food production and storage processes]. Moscow, 2015. 22 p. (In Russ.).

12. Zmiyeva K. A. Avtomaticheskaya sistema kontrolya i regulirovaniya mikroklimata teplichnogo kompleksa [Automatic system for monitoring and regulating the microclimate of a greenhouse complex] // Avtomatizirovannyy elektroprivod i promyshlennaya elektronika. Automated Electric Drive and Industrial Electronics. Novokuznetsk, 2018. P. 49–53. EDN: IYPJFU. (In Russ.).

13. Yuran S. I., Vershinin M. N. Sovershenstvovaniye sistemy regulirovaniya mikroklimata na osnove nechetkoy logiki [Improvement of the microclimate control system based on fuzzy logic] // Vestnik NGIEI. Bulletin NGIEI. 2019. No. 9 (100). P. 33–45. EDN: FYYJWA. (In Russ.).

14. Averkin A. N. Nechetkiye mnozhestva v modelyakh upravleniya i iskusstvennogo intellekta: kniga po trebovaniyu [Fuzzy sets in control models and artificial intelligence: book on demand]. Moscow, 2013. 312 p. (In Russ.).

15. Panfilov A. E., Krushel E. G. Primeneniye Matlabprilozheniya PDEapp dlya modelirovaniya dinamicheskikh protsessov s raspredelennymi parametrami [Using the Matlab application PDEapp for modeling dynamic processes with distributed parameters] // Innovatsionnyye tekhnologii v obuchenii i proizvodstve. Innovative Technologies in Training and Production. Volgograd, 2021. Vol. 1. P. 118–121. EDN: LOETOQ. (In Russ.).

16. Shilkina S. V., Fokina E. N. Kontroller nechetkoy logiki v upravlenii tekhnologicheskimi protsessami [The controller of fuzzy logic in the management of technological processes] // Vestnik SibADI. The Russian Automobile and Highway Industry Journal. 2018. Vol. 15, no. 1 (59). P. 106–114. EDN: YTMCNS. (In Russ.).

17. Ali R. B., Aridhi E., Mami A. [et al.]. Fuzzy logic controller of temperature and humidity inside an agricultural greenhouse Environmental Science // 7th International Renewable Energy Congress. Hammamet, 2016. P. 1–6. DOI: 10.1109/IREC.2016.7478929. (In Engl.).

18. Mohamed S., Hameed I. A. A GA-Based Adaptive NeuroFuzzy Controller for Greenhouse Climate Control System // Alexandria Engineering Journal. 2018. Vol. 57 (2). P. 773–779. DOI: 10.1016/j.aej.2014.04.009. (In Engl.).

19. Nicolosi G., Volpe R., Messineo A. An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse // Energies. 2017. Vol. 10, no. 5. P. 1–17. DOI: 10.10.3390/en10050722. (In Engl.).

20. Li G., Tang L., Zhang X. [et al.]. Factors affecting greenhouse microclimate and its regulating techniques // 8th International Conference on Environment Science and Engineering. Barcelona, 2018. Vol. 167. Р. 12–19. DOI: 10.1088/1755-1315/167/1/012019. (In Engl.).


Review

For citations:


Payuk L.A., Voronina N.A., Umurzakova A.D., Lazutkina E.E., Khatsevskiy K.V. Greenhouse climate control system based on fuzzy logic. Omsk Scientific Bulletin. 2024;10(2):59-68. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-59-68. EDN: CDPHLB

Views: 5

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1813-8225 (Print)
ISSN 2541-7541 (Online)