Determination of optical fiber varieties and early diagnosis of their physical condition based on the analysis of Mandelstam — Brillouin backscatter parameters
https://doi.org/10.25206/1813-8225-2024-190-107-116
EDN: XDUAQS
Abstract
Research results into the automating the processing of measurement data obtained from the Brillouin optical reflectometer, light guides containing various types of optical fibers are presented in this paper. By analyzing the parameters of the Mandelstam — Brillouin scatter obtained from Brillouin reflectograms, we can classify optical fibers in the studied telecommunication optical cables. This makes it possible to evaluate the change of the Brillouin frequency shift and determine the longitudinal fiber tension. The initial values of the Brillouin frequency shift and the profile of the Mandelstam — Brillouin scatter spectrum are different for each fiber type. The programs for automated processing of Brillouin reflectogram data are discussed. Estimation of the level of the back-reflected signal allows you to identify the factor, that had a predominant effect on the parameters of the Mandelstam — Brillouin scatter signal in the studied sections of optical fibers, and to compensate for the influence of temperature changes in the longitudinal strain distribution graphs. After that, we can plot a graph of the distribution of longitudinal strain along the fiber, caused precisely by mechanical influences on optical fibers. Conclusions about the accuracy of the estimates obtained by various algorithms, based on the accumulated experience in working with the presented programs are drawn.
About the Author
I. V. BogachkovRussian Federation
Bogachkov Igor Viktorovich, Doctor of Technical Sciences, Associate Professor, Professor of Communications and Information Security Department
AuthorID (RSCI): 276415
AuthorID (SCOPUS) 3699775670
ResearcherID: A-7770-2015
Omsk
References
1. Bogachkov I. V., Gorlov N. I. Determination of the Mandelstam — Brillouin scatter frequency characteristic in optical fibers of various types // Journal of Physics. 2022. Vol. 2182. P. 1–9. DOI: 10.1088/1742-6596/2182/1/012089. (In Engl.).
2. Andreev V., Burdin V., Nizhgorodov A. Stsenarii prognoza sroka sluzhby opticheskogo volokna v KLS [Scenarios of prediction optical fiber lifetime in cable lines] // Pervaya milya. Last Mile. 2020. No. 4. P. 34–43. DOI: 10.22184/2070-8963.2020.89.4.34.43. (In Russ.).
3. Belokrylov M. E., Claude D., Konstantinov Y. A. [et al.]. Method for increasing the signal-to-noise ratio of Rayleigh back-scattered radiation registered by a frequency domain optical reflectometer using two-stage erbium amplification // Instrum Exp Tech. 2023. Vol. 66. P. 761–768. DOI: 10.1134/S0020441223050172. (In Engl.).
4. Shuvalov V. P., Zelentsov B. P., Kvitkova I. G. Model′ nadezhnosti volokonno-opticheskoy linii svyazi pri nedostovernom prognoziruyushchem kontrole [Reliability model of a fiberoptic communication line with unreliable predictive control] // Bulletin of SibGUTI. The Herald of the Siberian State University of Telecommunications and Information Science. 2020. No. 4. P. 66–77. EDN: JICCJM. (In Russ.).
5. Gorshkov B. G., Yüksel K., Fotiadi A. A. [et al.]. Scientific applications of distributed acoustic sensing: State-of-the-Art review and perspective // Sensors 2022. Vol. 22, no. 1033. DOI: 10.3390/s22031033. (In Engl.).
6. Barkov F. L., Konstantinov Y. A., Krivosheev A. I. A novel method of spectra processing for Brillouin optical time domain reflectometry // Fibers. 2020. Vol. 8, no. 9. P. 1–11. DOI: 10.3390/FIB8090060. (In Engl.).
7. Krivosheev A. I., Barkov F. L., Konstantinov Y. A. [et al.]. State-of-the-Art methods for determining the frequency shift of Brillouin scattering in fiber-optic metrology and sensing // Instruments and Experimental Techniques. 2022. Vol. 65 (5). P. 687–710. DOI: 10.1134/S0020441222050268. (In Engl.).
8. Bogachkov I. V. Research of the features of Mandelstam — Brillouin backscattering in optical fibers of various types // T-comm. 2019. Vol. 13, no. 1. P. 60–65. DOI: 10.24411/2072-8735-2018-10216. EDN: YWFXSX. (In Engl.).
9. Bogachkov I. V., Gorlov N. I. Eksperimental′nyye issledovaniya kharakteristik rasseyaniya Mandel′shtama — Brillyuena v odnomodovykh opticheskikh voloknakh razlichnykh vidov [Experimental investigations into characteristics of Mandelstam — Brillouin scattering in single-mode optical fiber of various types] // Pribory i tekhnika eksperimenta. Instruments and Experimental Techniques. 2023. Vol. 66, no. 5. P. 775–781. DOI: 10.1134/S0020441223050068. (In Russ.).
10. Ruffin A. B., Li M.-J., Chen X. [et al.]. Brillouin gain analysis for fibers with different refractive indices // Optics Letters. 2005. Vol. 30 (23). P. 3123–3125. DOI:10.1364/OL.30.003123. (In Engl.).
11. Koyamada Y., Sato S., Nakamura S. [et al.]. Simulating and designing Brillouin gain spectrum in single-mode fibers // Journal of Lightwave Technology. 2004. Vol. 22 (2). P. 631–639. DOI: 10.1109/JLT.2003.822007. (In Engl.).
12. Krivosheev A. I., Konstantinov Y. A., Barkov F. L. [et al.]. Comparative analysis of the Brillouin frequency shift determining accuracy in extremely noised spectra by various correlation methods // Instruments and Experimental Techniques. 2021. Vol. 64 (5). P. 715–719. DOI: 10.1134/S0020441221050067. (In Engl.).
13. Bogachkov I. V. Classification of the factors causing the change of the optical fiber strain on the basis of Brillouin reflectograms // Journal of Physics: Conference Series. 2020. Vol. 1441. DOI: 10.1088/1742-6596/1441/1/012038. (In Engl.).
14. Bogachkov I. V. Automatized determination of types and characteristics of the optical fibers state located in the laid cables // Journal of Physics. 2020. Vol. 1546. P. 1–9. DOI: 10.1088/1742-6596/1546/1/012044. (In Engl.).
15. Bogachkov I. V., Gorlov N. I. The basics of automated processing of optical fiber reflectograms for evaluating characteristics of the Mandelstam — Brillouin backscatter // Conference: 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). 2020. P. 1–6. DOI: 10.1109/SYNCHROINFO49631.2020.9166114. (In Engl.).
16. Bogachkov I. V. Principles of automated data processing of Mandelstam — Brillouin backscatter characteristics for evaluating the state of optical fibers // T-comm. 2020. Vol. 14, no. 8. P. 47–52. DOI: 10.36724/2072-8735-2020-14-8-47-52. (In Engl.).
17. Programma dlya klassifikatsii raznovidnostey opticheskikh volokon po brillyuenovskim reflektogrammam: cvidetel′stvo o gosudarstvennoy registratsii programmy dlya EVM № 2019610752 [A program for classifying varieties of optical fibers according to Brillouin reflectograms: Certificate of the state computer program registration № 2019610752] / Bogachkov I. V. No. 2018662391; filed 07.11.2018; published 18.01.2019. (In Russ.).
18. Programma dlya vyyavleniya tipa vozdeystviya na opticheskiye volokna i opredeleniya ikh natyazheniya: cvidetel′stvo o gosudarstvennoy registratsii programmy dlya EVM № 2019667360 [A program for identifying the type of impact on optical fibers and determining their tension: Certificate of the state computer program registration No. 2019667360] / Bogachkov I. V. No. 2019666447/69; filed 13.12.2019; published 23.12.2019. (In Russ.).
Review
For citations:
Bogachkov I.V. Determination of optical fiber varieties and early diagnosis of their physical condition based on the analysis of Mandelstam — Brillouin backscatter parameters. Omsk Scientific Bulletin. 2024;10(2):107-116. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-107-116. EDN: XDUAQS
JATS XML




















