Unified reference system for geometric characteristics dimensional elements of details. Part II. Geometric characteristics of cylindrical elements of parts
https://doi.org/10.25206/1813-8225-2024-190-117-125
EDN: ETUPKD
Abstract
The unified reference system for the geometric characteristics of the part is the Cartesian rectangular coordinate system, which is materialized by sets of design datums that limit the part to six degrees of freedom: three linear and three angular. ISO standards for geometric tolerances do not use coordinate systems. In this context, research in the field of increasing the accuracy of parts by introducing linear and angular coordinates of part elements is relevant.
The paper presents the second part of the article Unified Reference System for Geometric Characteristics of Dimensional Elements of Parts, which focuses on the geometric characteristics of cylindrical elements of parts. It is shown that the datums of cylindrical elements are the axes of cylinders of maximum material capable of restricting four, two and one degrees of freedom for the part depending on the functional purpose of the element. The accuracy of coordinating dimensions should be specified by symmetrical tolerances for linear and angular coordinates of elements.
About the Authors
V. I. GlukhovRussian Federation
Glukhov Vladimir Ivanovich, Doctor of Technical Sciences, Associate Professor, Professor of Oil and Gas Engineering, Standardization and Metrology Department
AuthorID (SCOPUS): 56503382500
ResearcherID: Q-2030-2016
Omsk
L. G. Varepo
Russian Federation
Varepo Larisa Grigorievna, Doctor of Technical Sciences, Associate Professor, Professor of Oil and Gas Engineering, Standardization and Metrology Department
AuthorID (SCOPUS):6507043152
ResearcherID: B-1163-2015
Omsk
References
1. ISO/IEC GUIDE 99:2007. International vocabulary of metrology. Basic and general concepts and associated temps (VIM). URL: https://www.iso.org/standard/45324.html (accessed: 02.03.2023). (In Engl.).
2. ISO 80000-3. Quantities and units — Part 3: Space and time. URL: https://www.iso.org/standard/64974.html (accessed: 02.03.2023). (In Engl.).
3. ISO 10303-203:2011. Industrial automation systems and integration — Product data representation and exchange — Part 203: Application protocol: Configuration controlled 3D design of mechanical parts and assemblies. URL: https://www.iso.org/standard/44305.html (accessed: 02.03.2023). (In Engl.).
4. ASME Y14.5-2009. Dimensioning and Tolerancing. Engineering Drawing and Related Documentation Practices: An international standard. USA, New York: The American Society of Mechanical Engineers, 2009. 215 p. (In Engl.).
5. GOST 21495-76. Bazirovaniye i bazy v mashinostroyenii. Terminy i opredeleniya [Locating and bases in machine building industry. Terms and definitions]. Moscow, 1990. 36 p. (In Russ.).
6. ISO 1101:2017. Geometrical product specifications (GPS) — Geometrical tolerancing — Tolerances of form, orientation, location and run-out. URL: https://www.iso.org/standard/66777.html (accessed: 02.03.2023). (In Engl.).
7. ISO 5459:2011. Geometrical product specifications (GPS) — Geometrical tolerancing — Datums and datum systems. URL: https://www.iso.org/standard/40358.html (accessed: 02.03.2023). (In Engl.).
8. ISO 14638:2015. Geometrical product specifications (GPS) — Matrix model. URL: https://www.iso.org/standard/57054.html (accessed: 02.03.2023). (In Engl.).
9. ISO 286-1:2010. Geometrical product specifications (GPS) — ISO code system for tolerances on linear sizes. Part 1: Basis of tolerances, deviations and fits. URL: https://www.iso.org/standard/45975.html (accessed: 02.03.2023). (In Engl.).
10. ISO 492:2014. Rolling bearings — Radial bearings — Geometrical product specifications (GPS) and tolerance values. URL: https://www.iso.org/standard/60356.html (accessed: 02.03. 2023). (In Engl.).
11. Henzold G. Geometrical Dimensioning and Tolerancing for Design, Manufacturing and Inspection: A Handbook for Geometrical Product Specification using ISO and ASME standards. 3rd ed. Butterworth-Heinemann, 2021. 463 p. (In Engl.).
12. Simmons C., Maguire D., Phelps N. Manual of Engineering Drawing: British and International Standards. 5th ed. ButterworthHeinemann, 2020. 608 p. (In Engl.).
13. Leonard P., Pairel E., Giordano M. A Simpler and More Formal Geometric Tolerancing Model // Procedia CIRP. 2013. Vol. 10 (4). P. 30–36. DOI: 10.1016/j.procir.2013.08.009. (In Engl.).
14. Serrano-Mira J., Rosado-Castellano P., Romero-Subirуn F. [et al.]. Incorporation of form deviations into the matrix transformation method for tolerance analysis in assemblies // Procedia Manufacturing. 2019. Vol. 41. P. 547–554. DOI: 10.1016/j.promfg.2019.09.042. (In Engl.).
15. Anwer N., Scott P. J., Srinivasan V. Toward a Classification of Partitioning Operations for Standardization of Geometrical Product Specifications and Verification // Procedia CIRP. 2018. Vol. 75. P. 325–330. (In Engl.).
16. Hidalgo D., Ruiz R. O., Delgadod A. A novel framework for relationship of manufacturing tolerance and componentlevel performance of journal bearings // Applied Mathematical Modelling. 2022. Vol. 105. P. 566–583. (In Engl.).
17. Aschenbrenner A., Wartzack S. A Concept for the Consideration of Dimensional and Geometrical Deviations in the Evaluation of the Internal Clearance of Roller Bearings // Procedia CIRP. 2016. Vol. 43. P. 256–261. DOI: 10.1016/j.procir.2016.02.003. (In Engl.).
18. Glukhov V. I., Pushkarev V. V., Khomchenko V. G. Geometric modeling in the problem of ball bearing accuracy // Journal of Physics: Conference Series. Mechanical Science and Technology Update. 2017. Vol. 858 (1). P. 012014. DOI: 10.1088/1742-6596/858/1/012014. (In Engl.).
19. Glukhov V. I., Varepo L. G., Nagornova I. V. [et al.]. Strength and geometry parameters accuracy improvement of 3D-printed polymer gears // Journal of Physics: Conference Series. Mechanical Science and Technology Update. 2019. Vol. 1260 (3). P. 032019. DOI: 10.1088/1742-6596/1260/3/032019. (In Engl.).
20. Glukhov V. I., Varepo L. G., Shalay V. V. [et al.]. New matrix for geometrical product specifications on coordinate basis // Journal of Physics: Conference Series. 2020. Vol. 1441 (1). P. 012061. DOI: 10.1088/1742-6596/1441/1/012061. (In Engl.).
21. Glukhov V. I., Varepo L. G. Edinaya sistema otscheta geometricheskikh kharakteristik razmernykh elementov detaley. Chast’ I. Teoriya dvukh razmerov maksimuma i minimuma [Unified reference system for geometric characteristics dimensional elements of details. Part I. The theory of two dimensions maximum and minimum] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2023. No. 3 (187). P. 116–124. DOI: 10.25206/1813-8225-2023-187-116-124. EDN: RWJCNA. (In Russ.).
Review
For citations:
Glukhov V.I., Varepo L.G. Unified reference system for geometric characteristics dimensional elements of details. Part II. Geometric characteristics of cylindrical elements of parts. Omsk Scientific Bulletin. 2024;10(2):117-125. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-117-125. EDN: ETUPKD
JATS XML




















