Determination of the influence of hydraulic load of centrifugal pump on coordinates of asynchronous frequencycontrolled electric drive
https://doi.org/10.25206/1813-8225-2023-187-84-91
EDN: MKOHWT
Abstract
The article considers the construction of a simulation model of an electrical complex including an asynchronous electric motor with frequency regulation, driving a centrifugal pump. Fluid pumping stations based on centrifugal pumps with asynchronous electric drives controlled by frequency converters are widely used, which makes the work relevant. Obtaining the dynamic characteristics of these drives makes it possible to understand the relationship of energy distribution, as well as to coordinate the operating modes of its main parts. For this purpose, a simulation model of the electric drive of the liquid pumping station is developed. This simulation model is used to carry out numerical experiments of the system, which includes the power channel of the electric drive, as well as the control system. Simintech software product is used as a modeling environment. In the work, transient processes of the coordinates of the electric drive are obtained under the influence of both the hydraulic load and the power supply. The influence of the hydraulic resistance of the pressure pipeline and static back pressure on the mechanical characteristic of the moment of resistance of the electric drive as a whole is shown. The considered approach for calculating the characteristics makes it possible to evaluate the mutual influence of the coordinates of various physical nature of centrifugal pump installations with an asynchronous frequency-controlled electric motor on each other.
About the Author
O. A. LysenkoRussian Federation
LYSENKO Oleg Aleksandrovich, Candidate of Technical Sciences, Associate Professor (Russia), Associate Professor of Electrical Engineering Department
Omsk
AuthorID (RSCI): 643928
AuthorID (SCOPUS): 5650338820
ReseearcherID: N-5528-2015
References
1. Leznov B. S., Leznov B. S. Energosberezheniye i reguliruyemyy privod v nasosnykh i vozdukhoduvnykh ustanovkakh [Energy saving and variable drive in pump and blower installations]. Moscow, 2006. 359 p. ISBN 5-283-00806-1. EDN QNMGHF. (In Russ.).
2. Bukreyev V. G., Shandarova E. B., Bystrov E. A. [et al.]. Verifikatsiya modeli prototipa asinkhronnogo elektroprivoda spetsial’nogo nasosnogo agregata [Verification of induction motor drive prototype model for special pumping unit] // Elektrotekhnicheskiye sistemy i kompleksy. Electrotechnical Systems and Complexes. 2022. No. 2 (55). P. 25–31. DOI: 10.18503/2311-8318-2022-2(55)-25-31. EDN GYMNRA. (In Russ.).
3. Gavrilov D. P., Barabanov V. G. Razrabotka i issledovaniye sistemy upravleniya nasosnoy ustanovkoy [Development and study of control systems pumping unit] // Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Mashinostroyeniye. Bulletin of the South Ural State University. Series Mechanical Engineering Industry. 2017. Vol. 17, no. 2. P. 11–19. DOI: 10.14529/engin170202. EDN YTPHWR. (In Russ.).
4. Tecle S. I., Ziuzev A. M., Kostylev A. V. Improving sucker rod pump efficiency using frequency controlled induction motor // Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022. Vol. 333, no. 11. P. 140–148. DOI: 10.18799/24131830/2022/11/3955. EDN EFKAYN. (In Engl.).
5. Braslavskiy I. Ya., Ishmatov Z. Sh., Polyakov V. N. Energosberegayushchiy asinkhronnyy elektroprivod [Energy saving asynchronous electric drive] / ed. by I. Ya. Braslavskogo. Moscow, 2004. 248 p. ISBN 5-7695-1704-2. EDN QMIONV. (In Russ.).
6. Korzhev A. A., Tolstikova M. V., Vatlina A. M. Modelirovaniye dinamicheskikh protsessov v sisteme elektroprivoda pul’ponasosa pri peremennoy kontsentratsii perekachivayemoy zhidkosti [Simulation of dynamic processes in the electric drive system of the pulp pump with variable concentration of the pumped liquid] // Gornoye oborudovaniye i elektromekhanika. Mining Equipment and Electromechanics. 2023. No. 2 (166). P. 12–19. DOI: 10.26730/1816-4528-2023-2-12-19. EDN SSLZTR. (In Russ.).
7. Il’inskiy N. F., Moskalenko V. V. Elektroprivod: energo- i resursosberezheniye [Electric drive: saving energy and resource efficiency]. Moscow, 2008. 553 p. (In Russ.).
8. Elovik V. L., Voytov I. V., Sedlukho Yu. P. Raschet i analiz rezhimov raboty tsentrobezhnykh nasosov s chastotnoreguliruyemym elektroprivodom [Calculation and analysis of centrifugal pumps with variable speed drive]. Minsk, 2022. 110 p. ISBN 978-985-897-023-9. EDN NXDWTG. (In Russ.).
9. Levi E. General method of magnetising flux saturation modelling in d-q axis models of double-cage induction machines // IEE Proceedings — Electric Power Applications. 1997. Vol. 144, Issue 2. P. 101–109. DOI: 10.1049/ip-epa:19970781. (In Engl.).
10. German-Galkin S. G. Matlab & Simulink. Proyektirovaniye mekhatronnykh sistem na PK [Matlab & Simulink. Designing mechatronic systems on a PC]. St. Petersburg, 2011. 368 p. ISBN 978-5-7931-0884-3. (In Russ.).
11. Karassic I. J., Messina J. P., Cooper P., Heald C. C. Pump Handbook. 3rd ed. McGRAW-HILL New, 2001. 1790 p. ISBN 0-07034032-3. (In Engl.).
12. Khabarov S. P., Shilkina M. L. Osnovy modelirovaniya tekhnicheskikh sistem. Sreda Simintech [Fundamentals of technical system modelling. Simintech environment]. St. Petersburg, 2019. 120 p. ISBN 978-5-8114-3526-5. EDN NTKPGG. (In Russ.).
Review
For citations:
Lysenko O.A. Determination of the influence of hydraulic load of centrifugal pump on coordinates of asynchronous frequencycontrolled electric drive. Omsk Scientific Bulletin. 2023;(3):84-91. (In Russ.) https://doi.org/10.25206/1813-8225-2023-187-84-91. EDN: MKOHWT
JATS XML




















