The analysis of stability and variability of metrological characteristic (conversion coefficient) of glass capillary reference viscometers
https://doi.org/10.25206/1813-8225-2024-190-126-134
EDN: CMZFYF
Abstract
The results of determining the stability and variability of the main characteristic of glass capillary reference viscometers — conversion coefficient — by analyzing a set of data on viscometers having different diameters of the measuring capillary are presented. It is shown that the mean values of the sample differ from the mean values of the symmetric normal distribution curves within (2–4) %, as well as the correspondence of statistics to the normal distribution law by means of the inverse standard function and histograms showing the degree of correspondence of the sample distribution to the theoretical one.
About the Authors
V. Sh. SulaberidzeRussian Federation
Sulaberidze Vladimir Shalvovich, Doctor of Technical Sciences, Senior Researcher, Leading Researcher of the Research Laboratory of State Standards in the Field of Density and Viscosity Measurements of Liquids
ResearcherID: AAD 1295-2021
Saint Petersburg
A. A. Neklyudova
Russian Federation
Neklyudova Anastasiya Aleksandrovna, Candidate of Technical Sciences, Deputy Head of Research Laboratory of State Standards in the Field of Measurements of Density and Viscosity of Liquids, Associate Professor of Theoretical and Applied Metrology Department
ResearcherID: O-3887-2018
Saint Petersburg
References
1. Gu H., Tang X., Hong R. Y. [et al.]. Ubbelohde viscometer measurement of water-based Fe 3O4 magnetic fluid prepared by coprecipitation // Journal of Magnetism and Magnetic Materials. 2013. Vol. 348. P. 88–92. DOI: 10.1016/j.jmmm.2013.07.033. (In Engl.).
2. Lorefice S., Saba F. The Italian primary kinematic viscosity standard: The viscosity scale // Measurement. 2017. Vol. 112. P. 1–8. DOI: 10.1016/j.measurement.2017.08.006. (In Engl.).
3. Fujita Y., Kurano Y., Fujii K. Evaluation of uncertainty in viscosity measurements by capillary master viscometers // Metrologia. 2009. Vol. 46. 237–248. DOI: 10.1088/0026-1394/46/3/010. (In Engl.).
4. Neklyudova A. A., Sulaberidze V. Sh. Nauchnometodicheskiye osnovy metrologicheskogo obespecheniya sovremennykh metodov izmereniy vyazkosti zhidkikh sred [Scientific and methodological bases of metrological support of modern methods of viscosity measurements of liquid media]. Saint Petersburg, 2023. 232 p. ISBN 978-5-91258-497-8. (In Russ.).
5. Kawata M., Kurase K., Nagashima A. [et al.]. Capillary Viscometers, Measurement of the Transport Properties of luids / Ed. by Wakeham W. A., Nagashima A., Sengers J. V. Oxford: Blackwell, 1991. 479 р. (In Engl.).
6. Swindells J. F., Hardy R. C., Cottington R. L. Precise Measurements with Bingham viscometers and Cannon master viscometers // Journal of Research of the National Bureau of Standards. 1954. Vol. 52 (3). P. 105–220. (In Engl.).
7. Kawata M. Effects of length and exit-end shape of capillary tube on instrumental constants in capillary viscometer // Bulletin of the National Research Laboratory of Metrology. 1965. Vol. 10. P. 1–7. (In Engl.).
8. Stepanov L. P. Izmereniye vyazkosti zhidkostey [Measuring the viscosity of liquids]. Moscow, 1966. 43 p. (In Russ.).
9. ASTM D446-12. Standartnyye spetsifikatsii i instruktsii po ekspluatatsii steklyannykh kapillyarnykh kinematicheskikh viskozimetrov [Standard Specification and Operating Instructions for Glass Capillary Kinematic Viscometers]. 2017. URL: https://www.astm.org/standards/d446 (accessed: 09.01.2024). (In Russ.).
10. Cannon M. R., Manning R. E., Bell J. D. Viscosity Measurement. Kinetic Energy Correction and New Viscometer // Analitical Chemistry. 1960.Vol. 32, no. 3. P. 355–358. (In Engl.).
11. Neklyudova A. A. Sovershenstvovaniye metrologicheskogo obespecheniya izmereniy vyazkosti zhidkikh sred v intervale temperatury ot minus 40 °С do 150 °С [Improvement of metrological support of viscosity measurements of liquid media in the temperature range from minus 40 °C to 150 °C to 150 °C]. Saint Petersburg, 2019. 179 p. (In Russ.).
12. ISO/TR 3666:1998 Viscosity of water. URL: https://cdn.standards.iteh.ai/samples/28607/3c44fe1006904b7ab70511a4c3be583d/ISO-TR-3666-1998.pdf (accessed: 09.01.2024). (In Engl.).
13. ASTM D 2162-06. Standard practice for basic calibration of master viscometers and viscosity oil standards. URL: https://catalogue.normdocs.ru/?type=card&cid=com.normdocs.astm.card.d2162-06 (accessed: 21.11.2023). (In Engl.).
14. Neklyudova А. А., Sulaberidze V. Sh. Analiz pokazateley metrologicheskoy nadezhnosti viskozimetrov steklyannykh kapillyarnykh etalonnykh [Metrological dependability indicators analysis of the glass capillary reference viscometers] // Vestnik MGTU im. N. E. Baumana. Seriya «Priborostroyeniye». Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2024. No. 1 (146). P. 38–56. (In Russ.).
15. Kupriyenko N. V., Ponomareva O. A., Tikhonov D. V. Statistika. Metody analiza raspredeleniy. Vyborochnoye nablyudeniye. [Statistics. Methods of analyzing distributions. Sample observation]. 3rd ed. Saint Petersburg, 2009. 138 p. (In Russ.).
Review
For citations:
Sulaberidze V.Sh., Neklyudova A.A. The analysis of stability and variability of metrological characteristic (conversion coefficient) of glass capillary reference viscometers. Omsk Scientific Bulletin. 2024;10(2):126-134. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-126-134. EDN: CMZFYF
JATS XML




















