Study for quartz resonators in miniature metal-ceramic package for further use in temperature-compensated oscillators
https://doi.org/10.25206/1813-8225-2024-190-135-143
EDN: SZHSIV
Abstract
With the advent of new technologies, the requirements for the sources of reference vibrations are becoming more stringent. They must be compact, quickly reach frequency, operate in a wide temperature range and have a small relative frequency drift in the operating temperature range.
Changes in ambient temperature are the most destabilizing factor for the oscillator output frequency. Ensuring frequency stability over a wide temperature range is a pressing task.
Thermal compensation allows increasing frequency stability over a wide range of operating temperatures. This is achieved by compensating for the effect of the destabilizing factor on the generator so that the frequency drift tends to zero as the temperature changes. Temperature-compensated quartz oscillators are highly stable and have a short readiness time. However, to create generators with a frequency stability of ± 0,1 ppm, imported components are required, which makes their production difficult in modern conditions.
A technological chain is created at the JSC «LIT-PHONON», which allows producing a quartz resonator using only Russian components. The goal is to use these resonators in temperature-compensated oscillators with frequency stability of ± 0,1 ppm. However, the analysis showed that the resonators have problems with frequency drift over time during operation at a maximum operating temperature of + 85 ºС. Additional adjustment of generators during operation is required. It is also revealed that some Russian components are not ideally suited to the developed technological process, which may negatively affect the yield of suitable products. The measuring setup also has an error of ± 0,5 ppm, which does not allow an accurate assessment of the frequency stability of the resonators.
About the Author
M. I. BoychukRussian Federation
Boychuk Maxim Ivanovich, Candidate of Technical Sciences, Head of the Product Quality Control Service, Chief Inspector, Head of the Testing Laboratory; Senior Researcher at the Scientific Research Laboratory «Modern Radio Communication Systems», Omsk State Technical University
AuthorID (RSCI): 873302
Moscow; Omsk
References
1. Kosykh A. V. Istochniki vysokostabil’nykh kolebaniy na osnove kvartsevykh generatorov s tsifrovoy termokompensatsiyey [Sources of highly stable oscillations based on quartz oscillators with digital temperature compensation]. Omsk, 2006. 508 p. EDN: SUJLKL. (In Russ.).
2. Boychuk M. I. Tsifrovoy termokompensirovannyy kvartsevyy generator v keramicheskom korpuse dlya poverkhnostnogo montazha [Digital temperature compensated crystal oscillator in ceramic surface mount housing]. Moscow, 2019. 164 p. (In Russ.).
3. Kosykh A. V., Roy A. A., Murashko D. N. Modelirovaniye real’nogo temperaturnogo vozdeystviya na radioelektronnuyu apparaturu [Modeling of real temperature impact on radio electronic equipment] // Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2001. No. 14. P. 139–143. (In Russ.).
4. Boychuk M. I. Vliyaniye krepleniy na temperaturnochastotnuyu kharakteristiku rezonatorov [The effect of fasteners on the temperature-frequency response of resonators] // Komponenty i tekhnologii. Components and Technologies. 2011. No. 9 (122). P. 188–190. EDN: NYBLYL. (In Russ.).
5. Boychuk M. I., Gruzinenko V. B. Trebovaniye k kachestvu p’yezoelektricheskikh monokristallov kvartsa v proizvodstve vysokochastotnykh i mikrominiatyurnykh rezonatorov VChi SVCh-diapazona [The quality requirement of piezoelectric quartz single crystals in the production of high-frequency and microminiature resonators in the HF and microwave range] // Komponenty i tekhnologii. Components and Technologies. 2011. No. 3 (116). P. 146–147. EDN: NCWVMT. (In Russ.).
6. Patent 27122426 Russian Federation, IPC H03H 3/02. Sposob izgotovleniya tonkikh kristallicheskikh plastin i tonkikh kristallicheskikh elementov [Method of making thin crystalline plates and thin crystalline elements] / Boychuk M. I., Vlasov K. V., Cherpukhina G. N. [et al.]. No. 2019104435. (In Russ.).
7. Boychuk M. I., Glazunova Yu. A., Pashkov S. S. [et al.]. Issledovaniye dolgovremennoy stabil’nosti kvartsevykh rezonatorov [Study of long-term stability of quartz resonators] // Komponenty i tekhnologii. Components and Technologie. 2022. No. 2 (247). P. 14–18. EDN: CDZQFD. (In Russ.).
8. Boychuk M. I., Krivonogov V. E., Mikayeva S. A. [et al.]. Issledovaniye nadezhnostnykh kharakteristik kvartsevykh rezonatorov v miniatyurnykh keramicheskikh korpusakh [Study of the reliability of quartz resonators in miniature ceramic packages] // Rossiyskiy tekhnologicheskiy zhurnal. Russian Technological Journal. 2022. No. 10 (2). P. 43–50 DOI: 10.32362/2500-316X-2022-10-2-43-50. EDN: AJBNFO. (In Russ.).
9. Vig J. R. Quartz Crystal Resonators and Oscillators. New Jersey: Development & Engineering Center Fort Monmouth, 2004. 305 p. URL: https://docs.ampnuts.ru/eevblog.docs/eBooks/quartz_crystal_resonators_and_oscillators___for_frequency_control_and_timing_applications.pdf (accessed: 15.09.2023). (In Engl.).
10. Khomenko I. V., Kosykh A. V. Kvartsevyye rezonatory i generatory [Quartz resonators and oscillators]. Omsk, 2018. 159 p. ISBN 978-5-8149-2583-1. (In Russ.).
Review
For citations:
Boychuk M.I. Study for quartz resonators in miniature metal-ceramic package for further use in temperature-compensated oscillators. Omsk Scientific Bulletin. 2024;10(2):135-143. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-135-143. EDN: SZHSIV
JATS XML




















