Development and research of the structure of a digital frequency meter for an instantaneous frequency measurement system
https://doi.org/10.25206/1813-8225-2024-190-144-152
EDN: RBJKZD
Abstract
The article proposes a new method for measuring frequency based on a one-bit ADC. In contrast to the known method of measuring frequency using a delay line, the developed structure of a meter that implements the proposed method makes it possible to get rid of delay lines for measuring frequency in a wide frequency range and to sharply reduce the weight and size parameters of the entire meter with an integrated implementation. Unlike other known digital meters, described in sources, the proposed method makes it possible to increase the accuracy of frequency measurements in a wide frequency range.
About the Authors
A. N. LyashukRussian Federation
Lyashuk Aleksey Nikolayevich, Candidate of Technical Sciences, Associate Professor of Radio Engineering Devices and Diagnostic Systems Department
AuthorID (RSCI): 742615
ResearcherID: R-2812-2016
Omsk
P. I. Puzyrev
Russian Federation
Puzyrev Pavel Ivanovich, Candidate of Technical Sciences, Associate Professor of Radio Engineering Devices and Diagnostic Systems Department
AuthorID (SCOPUS): 54391518700
ResearcherID: E-8041-2014
Omsk
S. A. Zavyalov
Russian Federation
Zavyalov Sergey Anatolievich, Candidate of Technical Sciences, Associate Professor of Radio Engineering Devices and Diagnostic Systems Department
AuthorID (SCOPUS): 57221599219
ResearcherID: E-8661-2014
Omsk
References
1. Bendat J. S. Principle and Applications of Random Noise Theory. New York: Wiley, 1958. 431 p. (In Engl.).
2. East P. W. Fifty years of instantaneous frequency measurement // IET Radar, Sonar & Navigation. No. 6. P. 112– 122. DOI:10.1049/iet-rsn.2011.0177. (In Engl.).
3. Collins J. H., Grant P. M. A review of current and future components for electronic warfare receivers // IEEE Transactions on Sonics and Ultrasonics. 1981. Vol. 28, no. 3. P. 117–125. DOI: 10.1109/T-SU.1981.31234. (In Engl.).
4. Blerkom R. Van, Freeman D. G., Crutchfield R. C. Frequency Measurement Techniques // IEEE Transactions on Instrumentation and Measurement. 1968. Vol. 17, no. 2. P. 133– 145.DOI: 10.1109/TIM.1968.4313684. (In Engl.).
5. Vasilenko V. E., Dikarev B. D., Zikiy A. N. [et al.]. Eksperimental’noye issledovaniye priyemnika mgnovennogo izmereniya chastoty [Experimental investigation of the receiver of the momentary frequency measuring] // Izvestiya YuFU. Tekhnicheskiye nauki. Izvestiya SFedU. Engineering Sciences. 2008. No. 3 (80). P. 168–171. EDN: KNOFGV. (In Russ.).
6. Kvachev M. A., Puzyrev P. I., Semenov K. V. Research of Instantaneous Frequency Measurement Receiver // 2020 Dynamics of Systems, Mechanisms and Machines (Dynamics). 2020. P. 1–5. DOI: 10.1109/Dynamics50954.2020.9306185. (In Engl.).
7. Egorov N., Kochemasov V. Mgnovennoye izmereniye chastoty: metody i sredstva [Instantaneous frequency measurement: methods and devices] // Elektronika: nauka, tekhnologiya, biznes. Electronics: Science, Technology, Business. 2017. No. 5 (00165). P. 136–141. DOI: 10.22184/1992-4178.2017.165.5.136.141. EDN: YTXTAT. (In Russ.).
8. Mazim N. J. N. B., Ain M. F., Hassan S. I. S. ADS simulation of 2 to 5 GHz IFM correlator // 2005 Asia-Pacific Conference on Applied Electromagnetics. Johor, Malaysia, 2005. P. 203–206. DOI: 10.1109/APACE.2005.1607807. (In Engl.).
9. Gruchala H., Czyzewski M. The instantaneous frequency measurement receiver in the complex electromagnetic environment // 15th International Conference on Microwaves, Radar and Wireless Communications (IEEE Cat. No. 04EX824). Warsaw, Poland, 2004. Vol. 1. P. 155–158. DOI: 10.1109/MIKON.2004.1356885. (In Engl.).
10. Lam D., Buckley B. W., Lonappan C. K. [et al.]. Ultra-wideband instantaneous frequency estimation // IEEE Instrumentation & Measurement Magazine. 2015. Vol. 18, no. 2. P. 26–30. DOI: 10.1109/MIM.2015.7066680. (In Engl.).
11. Pandolfi C., Fitini E., Gabrielli G. [et al.]. Comparison of analog IFM and digital frequency measurement receivers for electronic warfare // The 7th European Radar Conference. Paris, France, 2010. P. 232–235. (In Engl.).
12. Thornton M. J. Ultra-broadband frequency discriminator designs for IFM receivers // IEE Colloquium on Multi-Octave Active and Passive Components and Antennas. London, UK, 1989. P. 13/1–13/4. (In Engl.).
13. Goavec A., Vauché R., Gaubert J. [et al.]. Instantaneous frequency measurement for IR-UWB signal in CMOS 130 nm // 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS). Monte Carlo, Monaco, 2016. P. 157–160. DOI: 10.1109/ICECS.2016.7841156. (In Engl.).
14. Rahimpour H., Masoumi N. Design and Implementation of a High-Sensitivity and Compact-Size IFM Receiver // IEEE Transactions on Instrumentation and Measurement. 2019. Vol. 68, no. 7. P. 2602–2609. DOI: 10.1109/TIM.2018.2866312. (In Engl.).
15. Wu Ruey-Beei, Chao Fang-Lin. Flat spiral delay line design with minimum crosstalk penalty // IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B. 1996. Vol. 19, no. 2. P. 397–402. DOI: 10.1109/96.496044. (In Engl.).
16. Rahimpour H., Masoumi N. High-Resolution Frequency Discriminator for Instantaneous Frequency Measurement Subsystem // IEEE Transactions on Instrumentation and Measurement. 2018. Vol. 67, no. 10. P. 2373–2381. DOI: 10.1109/TIM.2018.2816804. (In Engl.).
17. Rahimpour H., Masoumi N., Keshani S. [et al.]. A High Frequency Resolution Successive-Band Shifted Filters Architecture for a 15-bit IFM Receiver // IEEE Transactions on Microwave Theory and Techniques. 2019. Vol. 67, no. 5. P. 2028–2035. DOI: 10.1109/TMTT.2019.2904259. (In Engl.).
18. Rahimpour H., Masoumi N. A 6-bit Instantaneous Frequency Discriminator Based on Band-Stop Resonators // 2018 Iranian Conference on Electrical Engineering (ICEE). Mashhad, Iran, 2018. P. 255–259. DOI: 10.1109/ICEE.2018.8472583. (In Engl.).
19. Fields T. W., Sharpin D. L., Tsui J. B. Digital channelized IFM receiver // 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 94CH3389-4). San Diego, CA, USA, 1994. P. 87–90. DOI: 10.1109/NTC.1994.316686. (In Engl.).
20. Yingjiao R., Wenfang L. Research on Digital Instantaneous Frequency Measurement Based on Passive Positioning System // 2018 IEEE 4th International Conference on Computer and Communications (ICCC). Chengdu, China. 2018. P. 1008–1012. DOI: 10.1109/CompComm.2018.8780982. (In Engl.).
21. Su Yu, Jiang Defu. Digital Instantaneous Frequency Measurement of a Real Sinusoid Based on Three Sub-Nyquist Sampling Channels // Mathematical Problems in Engineering. 2020. Vol. 2020. P. 1–11. DOI: 10.1155/2020/5089761. (In Engl.).
22. Keshani S., Masoumi N. Improved Frequency Accuracy of IFM Using Minimum Mean Squared Error Algorithm // Electrical Engineering (ICEE). Mashhad, Iran, 2018. P. 260–264. DOI: 10.1109/ICEE.2018.8472591. (In Engl.).
23. Keshani S., Masoumi N., Rahimpour H. [et al.]. Digital Processing for Accurate Frequency Extraction in IFM Receivers // IEEE Transactions on Instrumentation and Measurement. 2020. Vol. 69, no. 9. P. 6092–6100. DOI: 10.1109/TIM.2020.2969063. (In Engl.).
24. Hirai A., Tsutsumi K., Tsuru M. [et al.]. A 0.1-to-10 GHz Digital Frequency Discriminator IC with Time to Digital Converter and Adaptive Control of Frequency Division Ratio for Instantaneous Frequency Measurement // 2019 IEEE MTT-S International Microwave Symposium (IMS). Boston, MA, USA, 2019. P. 1287–1290. DOI: 10.1109/MWSYM.2019.8700846. (In Engl.).
25. Wang C., Li Y., Li K. An High-precision FFT Frequency Offset Estimation Algorithm based on Interpolation and Binary Search // 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Chengdu, China, 2019. P. 437–442. DOI: 10.1109/ITNEC.2019.8729465. (In Engl.).
26. Kanai H., Chubachi N., Suzuki H. A method to evaluate accuracy of FFT-based periodicity analysis for short length signal in low SNR // [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. San Francisco, CA, USA, 1992. Vol. 5. P. 45–48. DOI: 10.1109/ICASSP.1992.226662. (In Engl.).
27. Lee Soon-Woo, Kang Jimyung, Kim Yong-Hwa [et al.]. Simple threshold estimation for a 1-bit ADC in a low complex IR-UWB receiver // 2008 IEEE International Conference on UltraWideband. Hannover, Germany, 2008. P. 215–217. DOI: 10.1109/ICUWB.2008.4653389. (In Engl.).
28. Norouzi Y., Shahbazi H., Mirzaei S. Performance Analysis Of Mono-bit Digital Instantaneous Frequency Measurement (Difm) Device // Mathematical Problems in Engineering. 2017. P. 11. DOI: 10.22060/eej.2017.12155.5050. (In Engl.).
29. Mahlooji S., Mohammadi K. Very High Resolution Digital Instantaneous Frequency Measurement Receiver // 2009 International Conference on Signal Processing Systems. Singapore. 2009. P. 177–181. DOI: 10.1109/ICSPS.2009.43. (In Engl.).
30. Helton J., Chen C. -I. H., Lin D. M. [et al.]. FPGA-Based 1. 2 GHz Bandwidth Digital Instantaneous Frequency Measurement Receiver // 9th International Symposium on Quality Electronic Design (ISQED 2008). San Jose, CA, USA, 2008. P. 568–571. DOI: 10.1109/ISQED.2008.4479798. (In Engl.).
31. Krone S., Fettweis G. Capacity of communications channels with 1-bit quantization and oversampling at the receiver // 2012 35th IEEE Sarnoff Symposium. Newark, NJ, USA, 2012. P. 1–7. DOI: 10.1109/SARNOF.2012.6222713. (In Engl.).
32. Landau L. T. N., Dörpinghaus M., Lamare R. C. [et al.]. Achievable rate with 1-bit quantization and oversampling at the receiver using continuous phase modulation // 2017 IEEE 17th International Conference on Ubiquitous Wireless Broadband (ICUWB). Salamanca, Spain, 2017. Vol. 17, Issue 10. P. 1–7. DOI: 10.1109/ICUWB.2017.8250995. (In Engl.).
33. Stein M. S. Performance analysis for time-of-arrival estimation with oversampled low-complexity 1-bit a/d conversion // 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, LA, USA, 2017. P. 4491–4495. DOI: 10.1109/ICASSP.2017.7953006. (In Engl.).
34. Mezghani A., Nossek J. A. Analysis of Rayleigh-fading channels with 1-bit quantized output // 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, 2008. P. 260–264. DOI: 10.1109/ISIT.2008.4594988. (In Engl.).
35. Takuto Ohtaguro, Masato Saito, Takaya Yamazato. Experimental Study on Noise Aided 4PAM Receiver with 1bit ADC // The Institute of Electronics, Information and Communication Engineers (IEICE). Japan, Poster Presentation, 2021. URL: https://ken.ieice.org/ken/paper/20211028BCgX/eng/ (accessed: 15.09.2023). (In Engl.).
36. Abdelhameed D., Umebayashi K., Atzeni I. [et al.]. Enhanced Signal Detection and Constellation Design for Massive SIMO Communications With 1-Bit ADCs // IEEE Access. 2023. Vol. 11. P. 11749–11765. DOI: 10.1109/ACCESS.2023.3242210. (In Engl.).
37. Mohammadkarimi M., Ardakani M. Optimal Channel Equalizer for mmWave Massive MIMO Using 1-bit ADCs in Frequency-Selective Channels // IEEE Communications Letters. 2020. Vol. 24, no. 4. P. 882–885. DOI: 10.1109/LCOMM.2020.2966477. (In Engl.).
38. Abdelhameed D., Umebayashi K., Al-Tahmeesschi A. [et al.]. Enhanced Signal Detection for Massive SIMO Communications with 1-Bit ADCs // 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Lucca, Italy, 2021. P. 66–70. DOI: 10.1109/SPAWC51858.2021.9593128. (In Engl.).
39. Lin D. M., Liou L. L., Benson S. [et al.]. Mono-bit digital chirp receiver using mono-bit IFM (instantaneous frequency measurement) receiver as a core // Proceedings of the 2011 IEEE National Aerospace and Electronics Conference (NAECON). Dayton, OH, USA, 2011. P. 348–351. DOI: 10.1109/NAECON.2011.6183130. (In Engl.).
Review
For citations:
Lyashuk A.N., Puzyrev P.I., Zavyalov S.A. Development and research of the structure of a digital frequency meter for an instantaneous frequency measurement system. Omsk Scientific Bulletin. 2024;10(2):144-152. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-144-152. EDN: RBJKZD
JATS XML




















