Determination of the deformation modulus of binary composite using artificial neural network
https://doi.org/10.25206/1813-8225-2024-190-153-162
EDN: PFRQYJ
Abstract
Using of existing methods of determining the characteristics of soils which are part of current regulatory documents and which are based on the hypothesis of normal character of distribution require considerable time and material costs. According to the results of conducted laboratory researches the hypothesis wasn’t confirmed. In the paper it proposes to use trained artificial neural network for determination of the deformation modulus of binary composite «sand — granules of expanded polystyrene». Thus, it has been proven efficiency proposing method using trained artificial neural network in compare classical regression equation for determination of the deformation modulus of the binary composite. With a confidence probability of P = 95 % the absolute value of the relative error is equal to 11,8 % the proposing learning artificial neural network in 11 times less than the absolute value of the relative error of classical regression equation. Also with a confidence probability of P = 95 % the coefficient of determination is equal to 0,5641 and in 6,6 times less than it of regression equation. Further research will be directed to the selection of the values of the parameters of the artificial neural network program for increase the accuracy of determining the deformation modulus of the binary composite.
About the Author
E. S. KlimanovaRussian Federation
Klimanova Ekaterina Sergeevna, Engineer, Assistant of Oil and Gas Engineering, Standardization and Metrology Department
Omsk
References
1. Gruzin A. V., Grinevich E. S., Klimanov D. N. The study of deformation properties of a sand soil — expanded polystyrene granules mixture under cyclic loading conditions // Journal of Physics: Conference Series. 2020. Vol. 1441 (1). P. 012062-1–012062-12. DOI: 10.1088/1742-6596/1441/1/012062. (In Engl.).
2. Gruzin A. V., Tokarev V. V., Shalai V. V., Logunova Yu. V. The Artificial Additives Effect to Soil Deformation Characteristics of Oil and Oil Products Storage Tanks Foundation // Procedia Engineering. 2015. Vol. 113. P. 158–168. DOI:10.1016/j.proeng.2015.07.311. (In Engl.).
3. SP 22.13330.2016. Osnovaniya zdaniy i sooruzheniy (Aktualizirovannaya redaktsiya SNiP 2.02.01-83*) [Foundations of buildings and structures (Updated edition of Building Codes and Regulations 2.02.01-83*)]. Available at «Consultant Plus» System. (In Russ.).
4. Boldyrev G. G. Metody opredeleniya mekhanicheskikh svoystv gruntov s kommentariyami k GOST 12248-2010 [Methods for determining the mechanical properties of soils with comments on GOST 12248-2010]. 2th ed. Moscow, 2014. 812 p. ISBN 972-5-905463-45-7. (In Russ.).
5. GOST 20276-2012. Grunty. Metody polevogo opredeleniya kharakteristik prochnosti i deformiruyemosti [Sоils. Field methods for determining the strength and strain characteristics]. Moscow, 2013. 45 p. (In Russ.).
6. GOST R 58270-2018. Grunty. Metod ispytaniy rasklinivayushchim dilatometrom. vved. vpervyye [Soils. Method of wedging dilatometer test]. Moscow, 2018. 10 p. (In Russ.).
7. GOST 19912-2012. Grunty. Metody polevykh ispytaniy staticheskim i dinamicheskim zondirovaniyem [Soils. Field test methods: cone penetration test and dynamic probing]. Moscow, 2019. 23 p. (In Russ.).
8. GOST 12248.3-2020. Grunty. Opredeleniye kharakteristik prochnosti i deformiruyemosti metodom trekhosnogo szhatiya [Soils. Determination of strength and deformation parameters by triaxial compression testing]. Moscow, 2020. 27 p. (In Russ.).
9. GOST 12248.4-2020. Grunty. Opredeleniye kharakteristik deformiruyemosti metodom kompressionnogo szhatiya [Soils. Determination of deformation parameters by compression testing]. Moscow, 2020. 19 p. (In Russ.).
10. GOST R 59958-2021. Grunty. Metod opredeleniya predelov prochnosti i modulya deformatsii pri ispytanii sosredotochennoy nagruzkoy [Soils. Test method for determination of the strength and deformation modulus experiencing a point load]. Moscow, 2020. 19 p. (In Russ.).
11. GOST 20522-2012. Grunty. Metody statisticheskoy obrabotki rezul’tatov ispytaniy [Soils. Methods of statistical treatment of test results]. Moscow, 2019. 16 p. (In Russ.).
12. Hiks Ch. Osnovnyye printsipy planirovaniya eksperimenta [Fundamental concepts in the design of experiments] / trans. from Engl. T. I. Golikovoy. Moscow, 1967. 406 p. (In Russ.).
13. Adler Yu. P., Markova E. V., Granovskiy Yu. V. Planirovaniye eksperimenta pri poiske optimal’nykh usloviy [Planning an experiment when searching for optimal conditions]. 2th ed. Moscow, 1976. 279 p. (In Russ.).
14. GOST 8.736-2011. Gosudarstvennaya sistema obespecheniya edinstva izmereniy. Izmereniya pryamyye mnogokratnyye. Metody obrabotki rezul’tatov izmereniy. Osnovnyye polozheniya [State system for ensuring the uniformity of measurements. Multiple direct measurements. Methods of measurement results processing. Main principles]. Moscow, 2019.18 p. (In Russ.).
15. Chung S.-Y., Elrahman M. A., Stephan D. Effects of expanded polystyrene (EPS) sizes and arrangements on the properties of lightweight concrete // Materials and Structures. 2018. Vol. 51 (3). Р. 1–11. DOI: 10.1617/s11527-018-1182-3. (In Engl.).
16. Ofrikhter I. V., Ponomaryov A. B., Zakharov A. V. [et al.]. Estimation of soil properties by an artificial neural network» // Magazine of Civil Engineering. 2022. Vol. 110 (2), no. 11011. P 1–7. DOI: 10.34910/MCE.110.11. (In Engl.).
17. Angshuman D., Chakrabortty P. Simple models for predicting cyclic behaviour of sand in quaternary alluvium // Arabian Journal of Geosciences. 2022. Vol. 15. P. 1–19. DOI: 10.1007/s12517-022-09639-6. (In Engl.).
18. Patent 2676778 Russian Federation, IPC E02D 27/35 (2006.01). Fundament rezervuara s uluchshennymi teploizolyatsionnymi svoystvami [The foundation of the tank with improved thermal insulation properties] // Gruzin A. V., Shalay V. V., Krupnikov V. I. No. 2018107360. (In Russ.).
19. Chollet F. Deep Learning with Python. New York: Manning Shelter Island, 2018. 384 р. (In Engl.).
20. Kobzar A. I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov [Applied mathematical statistics. For engineers and scientists]. Moscow, 2006. 816 p. ISBN 5-9221-0707-0. (In Russ.).
21. Smirnov N. V. Kurs teorii veroyatnostey i matematicheskoy statistiki dlya tekhnicheskikh prilozheniy [Course on Probability Theory and Mathematical Statistics for Technical Applications]. 3rd ed. by ster. Moscow, 1969. 511 p. (In Russ.).
22. Anderson T. W. Asymptotic theory of certain goodness of fit criteria based on stochastic processes // Annals of Mathematical Statistics. 1952. Vol. 23. P. 193–212. DOI: 10.1214/AOMS/1177729437. (In Engl.).
23. Metriki kachestva lineynykh regressionnykh modeley [Quality metrics for linear regression models] // Analiticheskaya platforma (Loginom). Loginom Analytical Platform. URL: https://loginom.ru/blog/classification-quality (accessed: 22.11.2023). (In Russ.).
24. Stepnov M. N. Statisticheskiye metody obrabotki rezul’tatov mekhanicheskikh ispytaniy [Statistical methods for processing mechanical test results]. Moscow, 1985. 232 p. (In Russ.).
Review
For citations:
Klimanova E.S. Determination of the deformation modulus of binary composite using artificial neural network. Omsk Scientific Bulletin. 2024;10(2):153-162. (In Russ.) https://doi.org/10.25206/1813-8225-2024-190-153-162. EDN: PFRQYJ
JATS XML



















