Analytical method for calculating losses in overhead lines of electric power systems taking into account changes in load and weather conditions
https://doi.org/10.25206/1813-8225-2023-187-101-108
EDN: QJTELW
Abstract
In this article, the subject of research is methods for calculating active power losses in electric power overhead lines, taking into account the temperature dependence of active resistances. An analytical approach based on the Ferrari method for calculating the wire temperature and active power losses under conditions of forced convection is proposed and substantiated in detail. The peculiarity of the approach is universality, which is expressed in the fact that the developed mathematical model allows us to consider non-insulated and insulated wires on power transmission lines from a single position. The results of calculating the temperature and active power losses by the proposed method, the least squares method and the iterative method are presented. The high accuracy of the coincidence of the results obtained by various methods is noted.
About the Author
E. V. PetrovaRussian Federation
PETROVA Elena Vladimirovna, Senior Lecturer of Power Supply for Industrial Enterprises Department
Omsk
AuthorID (RSCI): 685250
References
1. World Energy Outlook 2020 // International energy agency. URL: https://iea.blob.core.windows.net/assets/a72d8abfde08-4385-8711-b8a062d6124a/WEO2020.pdf (accessed: 17.05.2023). (In Engl.).
2. Statistical Review of World Energy 2022 // bp. URL: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-statsreview-2022-full-report.pdf (accessed: 17.05.2023). (In Engl.).
3. World Energy Outlook 2022 // International energy agency. URL: https://iea.blob.core.windows.net/assets/830fe0995530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf (accessed: 17.05.2023). (In Engl.).
4. Kühnel C., Bardl R., Stengel D. [et al.]. Investigations on the mechanical and electrical behavior of HTLS conductors by accelerated ageing tests // CIRED. 2017. Vol. 2017. P. 273–277. DOI: 10.1049/oap-cired.2017.0200. (In Engl.).
5. Albizu I., Fernández E., Alberdi R. [et al.]. Adaptive Static Line Rating for Systems With HTLS Conductors // IEEE Transactions on Power Delivery. 2018. Vol. 33, no. 6. P. 2849– 2855. DOI: 10.1109/TPWRD.2018.2855805. (In Engl.).
6. Nuchprayoon S., Chaichana A. Cost evaluation of current uprating of overhead transmission lines using ACSR and HTLS conductors // 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). 2017. P. 1–5. DOI: 10.1109/EEEIC.2017.7977606. (In Engl.).
7. Michiorri A., Nguyen H., Alessandrini S. [et al.]. Forecasting for dynamic line rating // Renewable and Sustainable Energy Reviews. 2015. Vol. 52. P. 1713–1730. DOI: 10.1016/j.rser.2015.07.134. (In Engl.).
8. Fan F., Bell K., Infield D. Transient-state real-time thermal rating forecasting for overhead lines by an enhanced analytical method // Electric Power Systems Research. 2019. Vol. 167. P. 213–221. DOI: 10.1016/j.epsr.2018.11.003. (In Engl.).
9. Vorotnitskiy V. E., Turkina O. V. Otsenka pogreshnostey rascheta poter’ elektroenergii v VL iz-za neucheta meteousloviy [Estimation of errors in calculating electricity losses in overhead lines due to non-accounting of weather conditions] // Elektricheskiye stantsii. Electric Stations. 2008. No. 10. P. 42–49. (In Russ.).
10. Zarudskiy G. K., Syromyatnikov S. Yu. Utochneniye vyrazheniy dlya rascheta temperatury provodov vozdushnykh liniy elektroperedachi sverkhvysokogo napryazheniya [More precise expressions for temperature calculation of EHV electrical transmission overhead lines] // Vestnik MEI. Bulletin of MPEI. 2008. No. 2. P. 37–42. (In Russ.).
11. Girshin S. S., Bigun A. Ya., Kropotin O. V. [et al.]. Comparison approximate analytical solution of the nonlinear differential equation of heating with numerical // Journal of Physics: Conference Series. 2019. Vol. 1260. Р. 1–8. DOI: 10.1088/1742-6596/1260/5/052006. (In Engl.).
12. Shepelev A. O., Petrova E. V., Sidorov O. A. Consideration of active resistances temperature dependency of power transformers when calculating power losses in grids // Proceedings – 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 2018. P. 1–5. DOI: 10.1109/ICIEAM.2018.8728811. (In Engl.).
13. Kuznetsov E. A., Goryunov V. N., Girshin S. S. [et al.]. Influence of insulation on thermal behavior of overhead line conductors // International Journal of Mechanical Engineering and Robotics Research. 2019. Vol. 8, no. 1. P. 109–113. DOI: 10.18178/ijmerr.8.1.109-113. (In Engl.).
14. Gerasimenko A. A., Shul’gin I. V., Timofeyev G. S. Kompleksnyy uchet rezhimno-atmosfernykh faktorov v raschete aktivnogo soprotivleniya i poter’ elektroenergii v LEP [Comprehensive accounting of regime-atmospheric factors in the calculation of active resistance and power losses in power lines] // Optimizatsiya rezhimov raboty elektricheskikh system. Optimization of Operating Modes of Electrical Systems. Krasnoyarsk, 2008. P. 188–206. (In Russ.).
15. Levchenko I. I., Satsuk E. I. Nagruzochnaya sposobnost’ i monitoring vozdushnykh liniy elektroperedachi v ekstremal’nykh pogodnykh usloviyakh [Loading capacity and monitoring of overhead power transmission lines under extreme weather conditions] // Elektrichestvo. Electricity. 2008. No. 4. P. 2–8. (In Russ.).
16. Girshin S. S., Bubenchikov A. A., Bubenchikova T. V. [et al.]. Mathematical Model of Electric Energy Losses Calculating in Crosslinked Four-Wire Polyethylene Insulated (XLPE) Aerial Bundled Cables // ELEKTRO 2016: proceeding of 11th International Conference. 2016. P. 294–299. DOI: 10.1109/ELEKTRO.2016.7512084. (In Engl.).
17. Kropotin O., Tkachenko V., Shepelev A. [et al.]. Mathematical model of XLPE insulated cable power line with underground installation // Przeglad Elektrotechniczny. 2019. Vol. 95, no. 6. P. 77–80. DOI: 10.15199/48.2019.06.14. (In Engl.).
18. Bigun A. Y., Sidorov O. A., Osipov D. S. [et al.]. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines // Journal of Physics: Conference Series. 2018. Vol. 944. P. 1–11. DOI: 10.1088/1742-6596/944/1/012016. (In Engl.).
19. Petrova E. V., Girshin S. S., Lyashkov A. A. [et al.]. Analiticheskoye resheniye uravneniya teplovogo balansa provoda vozdushnoy linii v usloviyakh vynuzhdennoy konvektsii [The analytical decision of the equation of thermal balance of the wire of the air-line in the conditions of compelled convection] // Sovremennyye problemy nauki i obrazovaniya. Modern Problems of Science and Education. 2013. No. 1–1. P. 218. (In Russ.).
20. Kurosh A. G. Kurs vysshey algebry [Higher Algebra course]. Moscow, 1968. 431 p. (In Russ.).
21. Girshin S. S. Priblizhennoye resheniye uravneniya teplovogo balansa provodov vozdushnykh liniy pri teplootdache estestvennoy konvektsiyey [The approached decision of the equation of thermal balance of wires of air-lines at the heat transfernatural convection] // Sovremennyye problemy nauki i obrazovaniya. Modern Problems of Science and Education. 2015. No. 1–1. P. 217. (In Russ.).
Review
For citations:
Petrova E.V. Analytical method for calculating losses in overhead lines of electric power systems taking into account changes in load and weather conditions. Omsk Scientific Bulletin. 2023;(3):101-108. (In Russ.) https://doi.org/10.25206/1813-8225-2023-187-101-108. EDN: QJTELW
JATS XML



















