Investigation of the environmental impact on the capacity of overhead power lines
https://doi.org/10.25206/1813-8225-2025-194-82-88
EDN: LQPNMN
Abstract
Due to the growing demand for electricity and the deterioration of existing infrastructure, overhead power lines in many cases are forced to operate at the limit of their thermal capabilities. This encourages engineers to increasingly pay attention to the consideration of weather factors affecting the temperature of conductors, using appropriate mathematical models. This makes it possible to quickly respond to changes in the thermal regime of the conductors.
In this article, based on the equations of thermal balance, analytical expressions are derived for calculating the temperature of insulated and non-insulated wires of overhead power lines. The presented mathematical model is confirmed by comparison with the finite element method implemented in the Ansys software package. The study also included a comprehensive study of how ambient temperature, wind speed and atmospheric pressure affect the thermal state of the conductor.
About the Authors
V. A. KrivolapovRussian Federation
Krivolapov Vladislav Aleksandrovich - Postgraduate of the Power Supply for Industrial Enterprises Department, OmSTU.
Omsk
S. S. Girshin
Russian Federation
Girshin Stanislav Sergeyevich - Candidate of Technical Sciences, Associate Professor, Associate Professor of the Power Supply for Industrial Enterprises Department, OmSTU, SPIN-code: 1125-1521. AuthorID (RSCI): 297584. AuthorID (SCOPUS): 57190579930.
Omsk
E. V. Petrova
Russian Federation
Petrova Elena Vladimirovna - Senior Lecturer of the Power Supply for Industrial Enterprises Department, OmSTU, SPIN-code: 2750-7350. AuthorID (RSCI): 685250.
Omsk
V. A. Deev
Russian Federation
Deev Vladislav Aleksandrovich - Master’s Student of the Power Supply for Industrial Enterprises Department, OmSTU.
Omsk
V. M. Trotsenko
Russian Federation
Trotsenko Vladislav Mikhaylovich - Senior Lecturer of the Power Supply for Industrial Enterprises Department, OmSTU, SPIN-code: 3958-5882. AuthorID (RSCI): 889516.
Omsk
V. N. Goryunov
Russian Federation
Goryunov Vladimir Nikolayevich - Doctor of Technical Sciences, Professor, Head of Power Supply for Industrial Enterprises Department, OmSTU, Omsk. SPIN-code: 2765-2945. AuthorID (RSCI): 302109. AuthorID (SCOPUS): 7003455231.
Omsk
M. Yu. Nikolayev
Russian Federation
Nikolaev Mikhail Yuryevich - Candidate of Technical Sciences, Associate Professor, Associate Professor of the Power Supply for Industrial Enterprises Department, OmSTU, SPIN-code: 1649-8920. AuthorID (SCOPUS): 57193405906. ResearcherID: Y-9077-2018.
Omsk
References
1. World Energy Investment 2024. International Energy Agency. URL: https://www.iea.org/reports/world-energyinvestment-2024 (accessed: 16.09.2024).
2. World Energy Outlook 2023. International Energy Agency. URL: https://www.iea.org/reports/world-energy-outlook-2023 (accessed: 16.09.2024).
3. General’naya skhema razmeshcheniya ob”yektov elektroenergetiki do 2042 goda: utv. rasporyazheniyem Pravitel’stva Ros. Federatsii ot 30 dekabrya 2024 g. № 4153-r [The general layout of electric power facilities until 2042: approved by the decree of the Government of the Russian Federation. No. 4153-r of the Russian Federation dated December 30, 2024] // Sobraniye zakonodatel’stva Rossiyskoy Federatsii [Collection of legislation of the Russian Federation]. 2025. No. 2, art. 75. P. 634–725. (In Russ.).
4. Global Energy Outlook 2024: Peaks or Plateaus? Resources for the Future. URL: https://www.rff.org/publications/reports/global-energy-outlook-2024/ (accessed: 16.09.2024).
5. Sredniy pokazatel’ iznosa elektrosetevoy infrastruktury «Rosseti» mozhet prevysit’ 60 % k 2025 godu [The average depreciation rate of ROSSETI's power grid infrastructure may exceed 60 % at 2025]. Energetika i Promyshlennost’ Rossii. Energy and Industry in Russia. URL: https://www.eprussia.ru/news/base/2021/2875181.htm (accessed: 16.09.2024). (In Russ.).
6. Ob utverzhdenii Energeticheskoy strategii Rossiyskoy Federatsii na period do 2035 goda: rasporyazheniye Pravitel’stva Rossiyskoy Federatsii ot 9 iyunya 2020 g. № 1523-r [On approval of the energy strategy of the Russian Federation until 2035: Decree of the Government of the Russian Federation of 9 June 2020 No. 1523-r]. Available at ConsultantPlus. (In Russ.).
7. IEEE Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors. IEEE. 2013. P. 1–72. DOI: 10.1109/IEEESTD.2013.6692858.
8. Guide for thermal rating calculations of overhead lines. CIGRE. 2014. 95 p.
9. STO 56947007-29.240.55.143–2013. Metodika rascheta predel’nykh tokovykh nagruzok po usloviyam sokhraneniya mekhanicheskoy prochnosti provodov i dopustimykh gabaritov vozdushnykh liniy: Standart organizatsii OAO «FSK EES» [STO 56947007-29.240.55.143–2013. Calculation methodology for current limit loads on conditions of mechanical strength of wires and permissible dimensions of overhead lines: Standard of the organization JSC «Federal Grid Company of Unified Energy System»]. Moscow, 2013. 42 p. (In Russ.).
10. Martinez R., Manana M., Arroyo A. [et al.]. Dynamic rating management of overhead transmission lines operating under multiple weather conditions. Energies. 2021. Vol. 14, no. 4. DOI: 10.3390/en14041136.
11. GOST 31946–2012. Provoda samonesushchiye izolirovannyye i zashchishchennyye dlya vozdushnykh liniy elektroperedachi. Obshchiye tekhnicheskiye usloviya [Insulated and protected wires for overhead power lines. General specifications]. Moscow, 2012. 20 p. (In Russ.).
12. Petrova E. V. Otsenka vliyaniya solnechnoy radiatsii na nagruzochnyye poteri aktivnoy moshchnosti v vysokotemperaturnykh i samonesushchikh izolirovannykh provodakh liniy elektroperedachi [Assessment of solar radiation effect on real-power losses under load in high-temperature and selfsupporting insulated wires of power lines]. Izvestiya Transsiba. Journal of Transsib Railway Studies. 2019. No. 3 (39). P. 134–145. EDN: LDQZUC. (In Russ.).
13. Курош А. Г. Курс высшей алгебры: Москва: Наука, 1968. 431 с. Kurosh A. G. Kurs vysshey algebry [Higher mathematics course]. Moscow, 1968. 431 p. (In Russ.).
14. Liu Z., Deng H., Peng R. [et al.]. An equivalent heat transfer model instead of wind speed measuring for dynamic thermal rating of transmission lines. Energies. 2020. Vol. 13, no. 18. DOI: 10.3390/en13184679.
15. Petrova E. V., Girshin S. S., Krivolapov V. A., Goryunov V. N., Trotsenko V. M. Analiz dlitel’no dopustimykh tokov i poter’ aktivnoy moshchnosti v vozdushnykh liniyakh elektroperedachi s uchetom klimaticheskikh faktorov [The analysis of continuous admissible currents and active power losses in overhead power lines taking into account climatic factors]. Omskiy nauchnyy vestnik. Omsk Scientific Bulletin. 2023. No. 4 (188). P. 84–92. DOI: 10.25206/1813-8225-2023-188-84-92. EDN: WQGZWB. (In Russ.).
Review
For citations:
Krivolapov V.A., Girshin S.S., Petrova E.V., Deev V.A., Trotsenko V.M., Goryunov V.N., Nikolayev M.Yu. Investigation of the environmental impact on the capacity of overhead power lines. Omsk Scientific Bulletin. 2025;(2):82-88. (In Russ.) https://doi.org/10.25206/1813-8225-2025-194-82-88. EDN: LQPNMN
JATS XML



















