Application of artificial neural networks for saturation correction in current and voltage transformers
https://doi.org/10.25206/1813-8225-2025-194-89-95
EDN: KIYQTY
Abstract
The article investigates the application of artificial neural networks for saturation correction in current and voltage transformers. Under saturation conditions, these transformers can distort signals, leading to the incorrect operation of measuring and protection devices. The use of artificial neural networks allows increasing accuracy in signal processing, thereby improving the reliability and safety of electric power systems. The paper describes methods for training neural networks using historical data, modeling transformer operation under various conditions, and developing algorithms for correcting distortions caused by saturation.
About the Authors
E. A. TemnikovRussian Federation
Temnikov Evgeny Aleksandrovich - Postgraduate of the Theoretical and General Electrical Engineering Department, OmSTU, SPIN-code: 6951-3997. AuthorID (RSCI): 1215049.
Omsk
K. I. Nikitin
Russian Federation
Nikitin Konstantin Ivanovich - Doctor of Technical Sciences, Associate Professor, Head of the Theoretical and General Electrical Engineering Department, OmSTU, SPIN-code: 3733-8763. AuthorID (RSCI): 641865. AuthorID (SCOPUS): 56825489500.
Omsk
References
1. Aleksandrov A. V. Vliyaniye bystrogo nasyshcheniya transformatorov toka na rabotu RZ [The effect of rapid saturation of current transformers on the operation of RZ]. Molodoy uchenyy. Young Scientist. 2021. No. 16 (358). P. 73–74. EDN: CZEEYC. (In Russ.).
2. Romanyuk F. A., Tishechkin A. A., Rumyantsev V. Yu. [et al.]. Vliyaniye nasyshcheniya transformatorov toka na rabotu tokovykh zashchit [Influence of current transformer saturation on operation of current protection]. Energetika. Izvestiya vysshikh uchebnykh zavedeniy i energeticheskikh ob”yedineniy SNG. Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations. 2010. No. 1. P. 5–10. EDN: RHWZCR. (In Russ.).
3. Bagleybter O. I. O vybore transformatorov toka dlya RZA v zavisimosti ot postoyannoy vremeni pervichnoy seti [On the selection of current transformers for RPA depending on the time constant of the primary network]. Avtomatizatsiya promyshlennosti. Industrial Automation. 2008. No. 8. P. 67–68. EDN: JRYMWH. (In Russ.).
4. Ozgonenel O. Correction of saturated current from measurement current transformer. IET Electric Power Applications. 2013. No. 7 (7). P. 580–585. DOI: 10.1049/iet-epa.2013.0105.
5. Odinayev I. N., Murzin P. V., Pazderin A. V. [et al.]. Analiz matematicheskikh metodov snizheniya pogreshnosti transformatora toka v rezhime nasyshcheniya [Analysis of mathematical methods for decreasing the saturated current transformer error]. Elektrotekhnicheskiye sistemy i kompleksy. Electrotechnical Systems and Complexes. 2020. No. 2 (47). P. 11–18. DOI: 10.18503/2311-8318-2020-2(47)-11-18. EDN: FPFIOC. (In Russ.).
6. Sanjay M., Raseswari P. Fault Classification for High Impedance Faults Using Back Propagation Based Artificial Neural Network Technique. 2024 International Conference on Sustainable Power & Energy (ICSPE). 2024. DOI: 10.1109/61.400828.
7. Radhi A. Classification and direction discrimination of faults in transmission lines using 1D convolutional neural networks. IEEE Transactions on Power Delivery. 2021. Vol. 12, no. 12 (3). P. 1928–1939. DOI: 10.11591/ijpeds.v12.i3.pp1928-1939.
8. Wujie Z., Chuanming J., Meixin F. Transmission Line Detection Through Bi-Directional Guided Registration With Knowledge Distillation. IEEE Transactions on Industrial Informatics. 2024. Vol. 20. P. 5671–5682.
9. Md. Rafayel B., Sabbir A., Nur Mohammad M., Kazi M., Asfaqur R., Abdullah A. ANN Based Fault Detection & Classification in Power System Transmission line. 2021 International Conference on Science & Contemporary Technologies (ICSCT). 2021. DOI:10.1109/ICSCT53883.2021.9642410.
10. Fraga A., Silveira E. G., Alipio R. Artificial Neural Network Applied to Differential Protection of Power Transformers. Journal of Control Automation and Electrical Systems. 2021. № 33 (3). DOI: 10.1007/s40313-021-00845-3.
11. Aswin K. S., Manav P., Polisetty S., Angel T. S. ANN and Deep Learning Classifiers for BCI applications. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). 2022. DOI: 10.1109/ICICICT54557.2022.9917834.
12. Lukowicz M., Rosolowski E. Fault type classification in high voltage power systems using artificial neural networks. URL: https://www.researchgate.net/publication/265944524 (accessed: 22.02.2025).
13. Lukowicz M., Rosolowski E. Artificial neural network based dynamic compensation of current transformer errors. Proceedings of the 8th International Symposium on Short-Circuit Currents in Power Systems. Brussels, 8–10 October. 1998. P. 19–24.
Review
For citations:
Temnikov E.A., Nikitin K.I. Application of artificial neural networks for saturation correction in current and voltage transformers. Omsk Scientific Bulletin. 2025;(2):89-95. (In Russ.) https://doi.org/10.25206/1813-8225-2025-194-89-95. EDN: KIYQTY
JATS XML




















